
Faculty of Computer Science, Institute for System Architecture, Chair for Computer Networks

DIPLOMA THESIS

Design and Implementation

of a Web Gateway

for Mobile Collaboration Services

submitted by

Nikolas Jansen
born August 6, 1982 in Bocholt

Professor: Prof. Dr. rer. nat. habil. Dr. h. c. A. Schill

Supervisor: Dr. Ing. Daniel Schuster

Submitted July 14, 2011

II

Technische Universität Dresden

III

IV

Fakultät Informatik, Institut für Systemarchitektur, Professur Rechnernetze

AUFGABENSTELLUNG FÜR DIE DIPLOMARBEIT
Name, Vorname: Jansen, Nikolas
Studiengang: Medieninformatik Matr.-Nr.: 2928402
Thema: Entwicklung eines Web-Gateways für mobile

Kollaborationsdienste

ZIELSTELLUNG
Mit der Verbreitung leistungsstarker Smartphones entstehen neue Möglichkeiten für
Kollaborationsdienste, die direkte Interaktion zwischen Personen auf vielfältige Weise
unterstützen. Im Projekt Mobilis sind dazu eine Reihe von Anwendungen wie MobilisXHunt,
MobilisBuddy oder MobilisTrader entstanden, die kollaborative Funktionen auf Android-Geräten
innerhalb einer auf XMPP basierten Client-Server-Architektur bereitstellen.
Ziel der Arbeit ist es, neben dem Zugriff aus speziell für die Android-Plattform entwickelten
Apps auch Web-basierten Zugriff auf die Dienste der Mobilis-Plattform von beliebigen
Endgeräten zu gestatten. Dazu soll zunächst der Fall eines Standard-Web-Zugriffs (z.B. mit
einem Netbook) untersucht werden und im Rahmen der Möglichkeiten der Arbeit auch auf
Webzugriff mit eingeschränkten Darstellungsmöglichkeiten (z.B. auf dem iPhone) eingegangen
werden. Es soll vor allem untersucht werden, wie die Echtzeitkommunikation zwischen Client
und Web-Server (z.B. mittels Ajax oder Comet) und zwischen Web-Server und Mobilis-Server
(XMPP) geeignet realisiert werden kann. Es soll ein generisches Framework für die Einbindung
von Web-Clients in Mobilis-Anwendungen entwickelt und anhand von mindestens zwei
existierenden Mobilis-Diensten validiert werden.

SCHWERPUNKTE
- Grundlagen: Web-Interaktionsframeworks (Ajax, Comet, …), XMPP, eCollaboration auf

mobilen Geräten, Web-basiertes eCollaboration
- Konzeption eines Web-Gateway-Frameworks
- Implementierung des Frameworks
- Implementierung der Web-Clients für zwei selbst gewählte Mobilis-Anwendungen

- Evaluation des Frameworks

Betreuer: Dr.-Ing. Daniel Schuster
Betreuender
Hochschullehrer: Prof. Dr. rer. nat. habil. Dr. h. c. Alexander Schill
Beginn am: 15.01.2011

Einzureichen am: 14.07.2011

__
Unterschrift des betreuenden Hochschullehrers

V

VI

Confirmation

I confirm that I independently prepared the thesis and that I used only the references

and auxiliary means indicated in the thesis.

Ich erkläre, dass ich die vorliegende Arbeit eigenständig und ausschließlich unter

Verwendung der im Quellenverzeichnis aufgeführten Literatur- und sonstigen Infor-

mationsquellen angefertigt habe.

Dresden, July 14, 2011

VII

VIII

Abstract

The Mobilis Project introduces a service-based middleware platform to support de-

velopment of mobile collaboration applications. Currently, the client applications for

this are restricted to the Android platform severely limiting the reach of customers.

In this work we discuss the web as an additional platform for client applications

in order to unlock more mobile platforms and devices for the Mobilis platform.

The real-time characteristics of a collaboration application impose serious challenges

when introducing the web browser and its limitations. The protocols that power the

web are not designed for the necessary bi-directional real-time message exchange

needed for the collaboration experience.

We investigate several technologies in regard to their capacity for facing these

challenges. We identify the most appropriate solution and build a web gateway for

mobile collaboration services on top of it. Our effort is dedicated to supporting web

application development to produce web-based clients for the Mobilis Project that

are in no way inferior to Android-based clients.

IX

X

Contents

Assignment VI

Confirmation VII

Abstract IX

Contents XIII

1. Introduction 1

1.1. The Overall Picture . 1

1.2. Contribution . 3

1.3. Outline . 4

2. Fundamentals 5

2.1. Extensible Messaging and Presence Protocol 5

2.1.1. Architecture . 6

2.1.2. Streaming XML . 7

2.1.3. XMPP Extension Protocols 9

2.2. Asynchronous Web Communication 11

2.2.1. Web Interaction Models . 12

2.2.2. Architecture of the World Wide Web 13

2.2.3. Real-Time Web Techniques 14

2.3. Mobilis Service Environment . 21

2.3.1. Mobilis Services . 22

2.3.2. Mobilis Beans . 23

2.4. State-of-the-Art . 23

2.4.1. Related Research Activities 23

2.4.2. Collaboration Tools . 26

2.4.3. Conclusion . 28

2.5. Summary . 30

3. Requirement Analysis 31

3.1. Functional Requirements . 31

3.2. Non-functional Requirements . 33

XI

Contents

3.3. Summary . 34

4. Conceptual Design 35

4.1. XMPP and the Web . 35

4.1.1. Comet . 37

4.1.2. WebSockets . 38

4.1.3. BOSH . 39

4.2. Architecture . 41

4.3. Mobilis Web Client . 43

4.3.1. Event-driven Architecture . 43

4.3.2. XMPP Web Client . 45

4.3.3. Mobilis Services Web Client 47

4.4. Summary . 53

5. Implementation 55

5.1. Single Page Application . 55

5.2. XMPP Web Client . 57

5.3. Mobilis Services Web Client . 58

5.3.1. Configuration . 58

5.4. Extensibility . 62

5.5. Summary . 63

6. Evaluation 65

6.1. Browser Support . 65

6.2. MobilisXHunt Spectator Web Application 66

6.2.1. Mobilis.xhunt . 67

6.2.2. xhunt.js . 68

6.2.3. Summary . 69

6.3. MobilisGroups Mobile Web client . 70

6.4. Performance . 71

6.5. Error Handling . 72

6.6. Summary . 72

7. Conclusion 75

7.1. Summary . 75

7.2. Outlook . 76

Bibliography 84

List of Figures 86

List of Tables 87

XII

Contents

Listings 89

Acronyms 92

A. Mobilis Web Gateway QUnit Tests 93

B. Performance Evaluation 101

XIII

Contents

XIV

1. Introduction

This chapter illustrates the area of interest, motivates the topic, introduces the

contribution of this thesis and describes the structure of the work.

1.1. The Overall Picture

A few years ago, most mobile devices were very limited in their capabilities. Early

generations of smartphones were either entirely email focused or lacked sophisticated

touch screen capabilities. Mobile web browsers were restricted to displaying simple

text, links and occasionally images. The next generation of smartphones, pioneered

by Apple, Inc1 with the iPhone, introduced great changes for the mobile world: WiFi

and GPS support, 3G and Long Term Evolution (LTE), powerful processing capa-

bilities, desktop-like web browsers and streaming video. With the introduction of

powerful mobile devices, consumer expectations for performance and user interfaces

(UI) drastically changed. The exponential growth of mobile technology has seen

private and public organizations become increasingly more savvy of the importance

of providing content and services to consumers on mobile devices. The two fastest

growing applications on mobile devices are location-based services and mobile social

networks [PG11].

The term Mobile Social Software describes applications for mobile devices which

allow and support social interaction between users. Real-time information delivery

is fast emerging as one of the most important elements of the social online experi-

ence. As one of the first companies to adopt it, Research In Motion (RIM)2 is quite

famous for their BlackBerry Enterprise Server which is dedicated to pushing emails

to client devices. A lot of different techniques and protocols are available, but most

of them are closed and proprietary. The eXtensible Messaging and Presence Proto-

col (XMPP) brings real-time communication and rich presence mechanisms into the

mobile world in an open and extensible way.

Mobile collaboration, as a form of Mobile Social Software, relies heavily on real-

time messaging capabilities. It augments social networks with real-time information,

such as location or collaborative messages. A comprehensive environment is provided

in which users can interact in a target-oriented fashion to reach common goals.

1http://www.apple.com/
2http://www.rim.com/

1

1. Introduction

The Mobilis Project introduces a service oriented platform to support developers of

mobile collaboration applications. According to a survey performed by Springer et

al. [SSB+08], more than 80% of the top 50 proposals of Google’s Android Developers

Challenge used at least one collaboration feature while 30% utilize at least three

collaboration features. The Mobilis platform provides a set of collaboration features

as reusable services for efficient application development. As of now, only client

applications native to the Android Platform3 are supported in the Mobilis Project .

Many mobile services suffer restrictions to one specific platform. The biggest chal-

lenge for mobile application development is the fragmentation across devices, mobile

operating systems and their native application ecosystems. Building a different ver-

sion of a mobile application for each platform is expensive if written in each native

language. Required skills include C and Objective-C for iOS development, Java for

Android and BlackBerry development, C and C++ for Symbian development and

.NET for Windows Phone development.

The Tablet market suffers the same fragmentation among platforms. Four recently

released tablet devices are powered by four different operation systems.

Tablet Apple iPad Samsung Galaxy Tab RIM PlayBook HP TouchPad

Platform iOS Android Tablet OS webOS

Table 1.1.: Fragmentation of Tablet Platforms

Despite the huge diversity of runtimes, the predominate focus in todays mobile world

is to develop native applications that run on a particular platform. The future of

mobile platforms is unclear in view of the fact that none of the competitors have

emerged as a dominant force. With this trend in mind, platform independent mo-

bile development seems very attractive. Web-based mobile application development

provides the desired independence and enjoys increasing popularity these days.

With the newest web standards and powerful Javascript engines built-in, mobile

web browsers provide a platform for feature rich applications. HTML5 [Hic11] brings

richer semantics, 3D graphics and effects, native access to video and audio, better

device integration, the ability to store data and run applications offline and enhanced

scalability via utilization of multiple CPUs. The World Wide Web Consortium

(W3C) Device API Working Group4 aims to standardize the support for device

specific Application Programming Interfaces (APIs) that provide functionality so

far reserved for native code, such as access to the local file system. Some mobile

browsers already support access to: Geolocation[RCBH10], camera, microphone and

even screen orientation and device motion.

Web technologies are just starting to bring native device functionalities to the

3http://www.android.com/
4http://www.w3.org/2009/dap/

2

1.2. Contribution

browser, and the web has proven to be a serious alternative as a runtime for mobile

social software. It even has some advantages not related to the development process

or platform fragmentation. The web makes it a lot easier to distribute and monetize

mobile applications. Web focused companies like Google, Inc5 benefit from the reach

their products have. Google+[Goo11b] and Google Docs[Goo11a] run on any device

with a modern browser. iOS applications run only on Apple-made devices.

In April 2011, 39.1% of U.S. mobile subscribers used the browser on their mobile

device, while downloaded applications were used by just 37.8% [com11]. That means

even now the web is more popular than native applications. Providing a mobile web

application to connect to your social network or your mobile collaboration services

is a smart business decision.

Bottom line is: web application development provides a platform independent

runtime for sophisticated client applications which are in no way inferior to native

applications.

The capabilities of modern web technologies in combination with the numerous

advantages just mentioned form mobile web applications into a promising route to

take in order to unlock more platforms and extend the reach. The objective of this

work is to design and implement a development framework for mobile collaboration

web applications.

1.2. Contribution

The previous section provided the motivation for the decision to extend the Mobilis

Project from Android exclusive client to platform independent web-based clients. In

this section we describe the contribution of this work to support that decision. Web

development faces the same challenges as desktop software development. Frame-

works support the development process by providing libraries that implement com-

monly used functionality.

The contribution of this work is a web gateway framework for Mobilis applica-

tions. We investigate various web technologies to built a system that accommodates

the real-time characteristic of collaboration applications. In addition to the commu-

nication aspect, we provide libraries for interacting with the services of the Mobilis

platform. We enable developers to easily built web-based clients by reusing the

collaboration services in the Mobilis Service Environment.

5www.google.com

3

1. Introduction

1.3. Outline

The remainder of this work is organized as follows. Chapter 2 presents fundamen-

tal knowledge about real-time messaging and web technologies. We also conduct

an analysis of the state-of-the-art in web-based collaboration systems. Chapter 3

illustrates the results of a comprehensive requirement analysis including functional

and non-functional requirements. In Chapter 4 we present the conceptual design of

a framework providing a web gateway for mobile collaboration services. Chapter 5

covers selected details of the implementation of concept. Both concept and imple-

mentation are evaluated in Chapter 6, while Chapter 7 sums up the results of this

work and provides an outlook to web-based real-time collaboration.

4

2. Fundamentals

This chapter provides fundamental knowledge necessary to follow the conceptual

design and implementation presented in this work. We begin in Section 2.1 with an

introduction of the eXtensible Messaging and Presence Protocol . In Section 2.2 we

discuss various web interaction models and technologies to achieve asynchronous web

communication. Section 2.3 provides an overview of the Mobilis Service Environ-

ment, an extensible service platform for mobile collaboration applications. Section

2.4 wraps this chapter up with an in depth analysis of the state-of-the-art in research

and industry.

2.1. Extensible Messaging and Presence Protocol

The eXtensible Messaging and Presence Protocol (XMPP) is, at its most basic level, a

protocol for moving small, structured pieces of data between two network endpoints

in near real time. This technology has been used to develop large-scale real-time

instant messaging systems, collaboration spaces, and voice and video conferencing

systems. The Request for Comments (RFC) 3920 [SA04a] and RFC 3921 [SA04b]

define the core of XMPP as an implementation of the Model for Presence and Instant

Messaging (IM) specified by the Internet Engineering Task Force (IETF)1 in RFC

2778 [DRS00]. On top of the core specification, the XMPP Standards Foundation

(XSF) elaborated a set of over 200 XMPP Extension Protocols (XEPs). In Section

2.1.3 we cover the XEPs relevant to this work.

Jeremy Miller invented XMPP technologies under the name Jabber in 1998 as an

interoperable open source instant messaging protocol. The developer community

grew fast and support for multiple platforms and languages was achieved shortly.

By 2001 the Jabber Software Foundation was formed to document the core protocol

and define extensions to the core in order to keep Jabber open source. The Jabber

Software Foundation was renamed in 2007 to the XMPP Standards Foundation.

The XSF2 decided to seek a wider review of the core protocols by formalizing them

within the IETF. After two years of intensive work, the IETF published the core

XMPP specifications in RFC 3920 [SA04a] and RFC 3921 [SA04b]. XMPP is today

1http://www.ietf.org/
2http://www.xmpp.org/

5

2. Fundamentals

an open standard that defines the protocols and data formats that power real-time

interactions over the Internet.

2.1.1. Architecture

XMPP uses a decentralized client-server architecture with multiple interconnected

servers. Although the specification does not tie the protocol to any specific network

architecture, in most real-life implementations the client establishes a long-lived

Transport Control Protocol (TCP) connection to a server. Servers also communicate

with each other over TCP connections. One design goal of XMPP is the interoper-

ability with other messaging protocols that comply with the IETF IM Model. Figure

2.1 shows the basic architecture of XMPP network. Much like email, the client only

communicates with its dedicated server and the federated network of interconnected

servers delivers the information to the recipient with server-to-server communica-

tion. The server of the sending client directly forwards the information to the target

server in a one-hop way unlike email where multiple hops between different servers

for a single message transfer are common.

XMPP
Server

XMPP
Server

XMPP
Server

XMPP
Gateway

XMPP
client

XMPP
client

XMPP
client

AIM
client

actual data transfer

logical connection

Figure 2.1.: XMPP Architecture

Addressing Scheme

The addressing scheme of XMPP is similar to the email addressing scheme. Every

entity in the network has a Jabber Identifier or JID. A JID is composed of three or-

dered elements, the node identifier, the domain identifier and the resource identifier.

The syntax of a JID is:

[node "@"] domain ["/" resource]

6

2.1. Extensible Messaging and Presence Protocol

XMPP utilizes the Domain Name System (DNS) in order to provide a familiar address

structure and avoid raw Internet Protocol (IP) addresses. The domain identifier is

a resolvable DNS name of the entity and is mandatory while the node and the

resource identifier are optional. In the common case of using the JID as an Instant

Inbox Address[DRS00] a user has to register with an XMPP service such as jabber

.org. The user gets a so-called bare JID which contains the node identifier and the

domain identifier. Every user may use this bare JID to open up multiple connections

to the server, with each connection distinguished by attaching a resource identifier

to the bare JID (forming the full JID). In the IM use case, this mechanism allows the

user to log-in with multiple chat clients or from multiple locations simultaneously.

Juliet@jabber.org/home is an example of a full JID .

Security

The XMPP core specification describes extensive security concepts. Transport Layer

Security (TLS) [DR08] and Simple Authentication and Security Layer (SASL) [MZ06]

are employed to achieve confidentiality, data integrity and mutual authentication.

XMPP provides a TLS profile to encrypt client-to-server communication. During

connection negotiation the XMPP server communicates the instituted security policy

to the client with either a <required/> or <optional/> tag followed by the usual TLS

handshake. After the handshake successfully completes, the client restarts the XMPP

session, only now encrypting everything it sends using the key received from the

server during the TLS handshake. In order to provide mutual authentication, SASL

enables application developers and service administrators to support many different

authentication mechanisms, such as PLAIN, DIGEST-MD5, SCRAM, EXTERNAL,

GSSAPI and ANONYMOUS. Server-to-server communications basically follows the

same pattern to achieve confidentiality and integrity. In this case the EXTERNAL

authentication mode is used to ensure inter-domain federation. Due to mandatory

security policies during server-to-server communication, it is not possible in XMPP

for a server to forge client identities.

2.1.2. Streaming XML

The base format for exchanging information in XMPP is XML. Two fundamental

concepts facilitate asynchronous bidirectional exchange of structured pieces of data,

XML streams and XML stanzas. Communication is accomplished by streaming XML,

which means exchanging XML stanzas over XML streams. In order to stream XML,

two entities need to establish a long-lived connection (e.g TCP) and negotiate two

XML streams (one for each direction of communication). Negotiation in this context

means to follow security protocols for authentication and encryption.

From a document-centric point of view, an XML stream is an XML document that

7

2. Fundamentals

is built continuously throughout the communication session. The root element of an

XML stream is the XML <stream> tag. XML stanzas are well-formed pieces of XML

and represent the basic unit of communication, much like packet or messages in

other network protocols. XML stanzas can contain a payload represented as nested

substructures. In essence, an XML stream functions as an envelope for all XML

stanzas exchanged during a communication session.

Three kinds of XML stanzas are defined in the XMPP core specification which we

characterize in the following sections: Message, Presence and Info/Query (IQ).

Message Stanza

The message stanza is represented by placing the <message/> tag as a first order

child in the XML stream and is regarded as the basic push method of XMPP for

sending information from one entity to another. In the familiar IM scenario the

message stanza is used to transfer chat data, encapsulating the text message as the

payload. Other applications are event delivery, alerts and notifications. Message

stanzas come in different types (e.g normal, chat or error) This determine how the

stanzas will be processing by the receiving entity. In addition to the type attribute,

the message stanza contains a from and to address and an id attribute for tracking

purposes. The core XMPP specifications define very basic payload elements, such as

<body/> or <subject/>. Many XEPs utilize the capabilities of the <message/> stanza

and define special purpose payload elements. Listing 2.1 shows a basic chat message

stanza.

<message from="juliet@verona.lit/balcony"

to="romeo@verona.it"

type="chat"

id="msg1">

<subject>The Balcony Scene</subject>

<body>Wherefore art thou, Romeo?</body>

</message>

Listing 2.1: Example for a message stanza

Presence Stanza

The presence stanza (<presence/>) is the basic broadcast or publish-subscribe mech-

anism. It is used to control and report the availability of an entity, such as online or

do not disturb. In addition, <presence/> is used to establish and terminate presence

subscriptions to other entities. The subscription itself is maintained through entries

in the roster, which represents the presence-enabled contact list of a particular en-

tity. A presence stanza with no type attribute indicate that the entity is available. If

present, the type attribute either means lack of availability or indicates the different

8

2.1. Extensible Messaging and Presence Protocol

stages of the subscription, such as subscribed or unsubscribed. Listing 2.2 illustrates

three different presence stanzas. The first two stanzas broadcast availability status,

whereas the third stanza indicates that the user romeo@book.it wants to subscribe

to availability broadcasts published by juliet@book.lit/home.

<presence>

<show>away</show>

<status>At home</status>

</presence>

<presence type="unavailable"/>

<presence from="romeo@verona.lit" to="juliet@verona.lit/balcony" type="

subscribe"/>

Listing 2.2: Examples for presence stanzas

Presence subscriptions are not automatically bidirectional. In terms of the IETF

Model for Presence and Instant Messaging [DRS00], the user romeo@book.it is the

Presentity and the user juliet@book.lit/home is the Subscriber form of a Watcher

and the exchange of presence stanzas functions as the Presence Protocol.

Info/Query Stanza

Info/Query, or IQ, is a request-response mechanism similar to the Hypertext Transfer

Protocol (HTTP) GET and POST/PUT semantics. With IQ stanzas an entity is

able to make a request of, and receive a response from, another entity. Info/Query

interactions are tracked by the requesting entity with the mandatory id attribute

as a reference. Common patterns (Figure 2.2) of structured data exchange such as

get/result or set/result (error responses are also possible) are followed. This leaves

four values for the mandatory type attribute. Get, set, response and error.

IQ stanzas contain one single piece of payload represented as a well-formed XML

snippet for the child element of the <iq/> tag. This request/response mechanism

is useful in any case where result data or simple acknowledgment is required. In

combination with the message stanza, the IQ stanza form the building blocks for

most XEPs. The xmlns attribute of the payload child element determines which XEP

is in use for a particular IQ stanza.

2.1.3. XMPP Extension Protocols

As mentioned earlier, data exchange in XMPP occurs in XML which gives the commu-

nication an extensible structure. It is easy to add new features to the protocol that

are both backward and forward compatible. This extensibility is put to great use in

9

2. Fundamentals

<iq type=‘get‘>

<iq type=‘set‘>

<iq type=‘set‘>

<iq type=‘result‘>

<iq type=‘result‘>

<iq type=‘error‘>

Sender Reciever

Figure 2.2.: IQ Interaction

the more than 200 XEPs registered with the XSF. XEPs are based on the aforemen-

tioned building blocks of XMPP communication, <message/>,<presence/> and <iq/>

stanzas. XEPs work though extensive use of XML Namespaces as a way to scope

XML stanza payloads. Extensions are matched on both the element name and the

namespace.

In the following paragraph we describe the XEPs used in the Mobilis Project and

also in the conceptual design for the web gateway for mobile collaboration services.

Data Forms (XEP-0004) The Data Forms extension [EHM+07] allows XMPP ap-

plications to define a form with fields of various types. In addition, a simple workflow

mechanism on top of these forms allows applications to request, provide, submit and

cancel forms. Data Forms are widely used by other XEPs as a generic data descrip-

tion format for dynamic form generation and data modeling.

Service Discovery (XEP-0030) The Service Discovery extension [HMESA08] of-

fers mechanisms to discover information about entities in the XMPP network. Three

distinct pieces of information are available for each entity: the basic identity, the

features it offers and the protocols it supports. In order to discover information,

the requesting entity sends an IQ stanza of type get containing an empty <query/>

element qualified by the http://jabber.org/protocol/disco#info namespace to the

JID of the target entity. The target entity then responses with a matching result

IQ stanza containing the same <query/> element. All information about the target

entity is included in the response stanza as child elements of the <query/> element.

10

2.2. Asynchronous Web Communication

Multi User Chat (XEP-0045) Unlike instant messaging, which is one-to-one com-

munication, XMPP provides channels or rooms for multi-party interaction. This

is similar to Internet Relay Chat (IRC). The XEP-0045 defines the namespace and

necessary payload elements to provide Multi User Chat (MUC). The basic idea be-

hind MUC is that participants can join a room and send messages that are delivered

to all other participants. Rooms have their own JID. Participants send presence

stanzas addressed to the room JID with the desired nickname as the resource ele-

ment of the JID. After a participant joins a room, all other participants receive a

notification about the new chat partner and his presence, which is followed by the

room sending a notification back to the new user about all room occupants. All the

aforementioned notifications are implemented as <presence/> stanzas. In order to

exchange messages, participants send message stanzas addressed to the room, which

are then reflected as a message stanza from the JID of the room with the original

senders nickname attached as the resource. These reflected stanzas are sent to every

participant in the room. The messages sent in a room are of type groupchat.

Publish Subscribe (XEP-0060) The XMPP publish subscribe extension provides

a framework for arbitrary event notifications in real-time. This XEP eliminates the

necessity for polling for updates on a regular basis. It implements the observer design

pattern, where an entity publishes an update and all entities that have subscribed

to receive updates are notified automatically in real-time. In this context real-

time means that events are broadcasted to all authorized subscribers as soon as the

event is triggered. The XEP-0060 defines this as a service that is able to receive

and process publish requests, distribute event notifications and maintain subscriber

lists. The central component in this publish-subscriber system is the node, to which

the publisher sends their updates and from which the subscribers receive the event

notifications.

2.2. Asynchronous Web Communication

As a second topic important to our work, we discuss in this section asynchronous

web communication. We begin with a definition of interaction models in the World

Wide Web to determine the features of asynchronous web communication. In order

to understand why this form of interaction on the web is a challenge, we take a look

at the architecture of the web. We then proceed to a detailed overview of approaches

to achieve asynchronous web communication.

11

2. Fundamentals

2.2.1. Web Interaction Models

Web interaction is the communication between the user, the client application (web

browser) and the server application (web server). Two basic communication steps

are considered. The first step occurs between the user and the client application, and

the second step happens between the client application and the server application.

Three basic interaction models exist: Synchronous, non-blocking and asynchronous.

Synchronous Interaction Model

This interaction model follows a strict request-response pattern, which means that

the client sends a request for a resource and waits until the response is received.

While the user waits for the response to arrive, all interactions with the client ap-

plication are blocked, defining this interaction model as synchronous with respect

to user actions. This model does not feature any mechanisms for the server to ini-

tiate communication with the client. The degree of dependency between request

and response is very high. The server only sends data that is requested by the

client. Server-side processing and user activity are completely coupled. Figure 2.3

illustrates synchronous interaction between the user, client and server application.

Application

Time

User

Client

Server

blocked

processing

blocked

processing

Figure 2.3.: Synchronous Interaction Model

Non-blocking Interaction Model

In the non-blocking interaction model an additional component within the client

application is used to decouple the user action from data retrieval. A special object

is used to send requests in the background without the user taking notice of this

process. Once the client has received the response, the user interface is dynamically

rendered incorporating the newly available data. This way, user action is not blocked

while data is being retrieved. The user experiences a much more interactive and

dynamic web application. Every piece of data sent by the server is still requested

12

2.2. Asynchronous Web Communication

by the client, indicating a high degree of dependency between request and response

as illustrated in Figure 2.4.

Application

Time

User

Client

Server

Figure 2.4.: Non-blocking Interaction Model

Asynchronous Interaction Model

Asynchronous interaction means that each communication participant can send data

independent from one another. User actions are not blocked and completely decou-

pled from any data communication between client and server. This model enables

the server application to send data to the client without the need for the client to

request the data. Request and response are almost free of any dependency. However,

an initial request from the client to the server to signal communication interest is

still necessary. Figure 2.5 shows the asynchronous interaction model.

Application

Time

User

Client

Server

Figure 2.5.: Asynchronous Interaction Model

2.2.2. Architecture of the World Wide Web

The Internet is a TCP/IP based network using HTTP as the transportation protocol

in its most popular interface, the World Wide Web. HTTP is an open, standardized

13

2. Fundamentals

network protocol that enables clients to easily access files stored on servers. The

main design goal of HTTP is to minimize latency and network communication on the

one hand, and to maximize scalability and independence of the components on the

other hand. This also provides the base for a popular architecture for distributed

system design called REST.

In REST, all interactions for obtaining a resource representation are performed

by synchronous request/response messages over HTTP. In this scheme, each inter-

action between the client and the server is independent of any other interactions.

No permanent connection is established and the server maintains no state informa-

tion about the client. In other words, the concepts of REST provide the scalable

architecture for pull-based systems based on HTTP.

In HTTP, there are two different roles: server and client. In general, the client

always initiates the conversation and the server replies. The server cannot transmit

any data to the browser on its own, following the synchronous interaction model.

HTTP messages are made of a header and a body. The body can remain empty.

It usually contains the data to transmit over the network. The header contains

metadata, such as encoding information but, in the case of a request, it also contains

the important HTTP methods.

The initial architecture of the Internet allowed updates to object state to happen

only on page reload. Thus, if two people worked on the same document, the first

person could see the changes of the second person only after clicking the refresh

button in the browser. Initial workarounds, such as polling, were unsophisticated

but over the years, the situation has dramatically improved. The web has evolved

from delivering web pages that are static documents, to pages that are enriched with

dynamic content and now to highly interactive browser-based rich internet applica-

tions. This evolution of web content also required an evolution in the interaction

capabilities of the web. Several solutions are used in practice that allow the server

to propagate state changes asynchronously. Next we analyze the most important

approaches.

2.2.3. Real-Time Web Techniques

Real-time web relies on the ability of a web server to provide information in a push-

based style [HJ99], broadcasting state changes to the client asynchronously every

time its state changes. In this model, a consumer subscribes to a channel and

receives any information that is sent on the channel. A producer sends the data to

the broadcaster with rules on how and where to distribute the data.

HTTP has most often been used as a request/response protocol, leading to clients

polling for new data, or users hitting the refresh button in their browsers. Ajax

provides a mild salve to the HTTP communication model by enabling clients to

14

2.2. Asynchronous Web Communication

poll for server-side events in a non-blocking fashion. By polling, server events can

be queued and delivered to the browser at each pre-determined poll interval. This

emulates server initiated communications and provides real-time message delivery

within the bounds of the poll interval. Attempting to simulate server initiated

communications with Ajax requires polling schemes, blindly checking for updates

irrespective of state changes in the application. The result of this technique is poor

resource utilization on both the client and server, since CPU-cycles and memory

are needlessly allocated to prematurely or belatedly detect updates on the server.

Consequently, depending on the rate in which events are published on the server,

traditional Ajax applications must constantly strike a balance between shorter and

longer polling internals in an effort to improve the accuracy of individual requests.

Furthermore, high polling frequencies result in increased network traffic and server

demands, while low polling frequencies result in missed updates and the delivery of

stale information. In either case, some added latency is incurred in message delivery.

Thus, true real-time communication is simply not possible with Ajax as our only

tool. More appropriate solutions are necessary to bring real-time to the web.

Real-time web applications include instant messaging applications, stock market

applications, online multiplayer games and collaboration spaces. The ability to send

relevant information to the client in reaction to new events, enables highly interactive

web applications.

Applications that are not built to run in a web browser transport data via differ-

ent application layer protocols. XMPP is a very good example of a true real-time

communication protocol. Unfortunately, web browsers provide no API for protocols,

such as XMPP, which would empower the bi-directional communication channel of

TCP sockets.

Over the years web engineers have developed multiple technologies to realize event-

driven web applications, but the observation in [FZ98], that push systems are actu-

ally implemented using a periodic pull or its derivative, is still valid. Another way

of realizing asynchronous web interaction is the use of non-standard (proprietary)

plug-in-based technologies like Java Applets, which extend the web browser, using

a Java Virtual Machine (JVM), Adobe Flash or Microsoft Silverlight. Users need

to install specific plug-ins that act like an intermediate layer of code, taking over

responsibility of server communication and rendering the web user interface.

Social network applications specially benefit from real-time event notification of

state changes to clients. Actions that users take, opinions they share or places they

reside are valuable information in a social network, and broadcasting them with very

low latency certainly is useful.

The next section introduces various approaches that augment HTTP and Ajax to

facilitate real-time web communication.

15

2. Fundamentals

Comet

In 2006 Russel [Rus] coined the term Comet as an umbrella term for techniques that

introduce an even greater departure from the synchronous communication model by

enabling an asynchronous push-style of communication over HTTP. Comet defines

several techniques that allow the server to send information to the browser without

specific prompting from a client. All techniques re-purpose existing mechanisms

that were not originally designed for asynchronous interaction between client and

server. They simulate a simplex channel for transmitting data from the server to

the browser. However, with the help of an additional HTTP connection, Comet can

even facilitate bi-directional communications over two HTTP connections. In the

following section we analyze three Comet techniques, two using long-lived HTTP

connections to stream data down to the client and another mechanism called long-

polling. All techniques allow the server to asynchronously dispatch a message to the

client at any point.

XMLHttpRequest Streaming The XMLHttpRequest (XHR) was originally designed

to implement non-blocking web applications by performing HTTP requests in

the background. With the help of a Multipurpose Internet Mail Extensions

(MIME) type specified as multipart/x-mixed-replace, this technique provides

near real-time communication semantics. After an initial request from the

browser the server indicates the response type as multipart and keeps the

HTTP connection open. Each update that the server now wants to commu-

nicate to the client is pushed as a separate portion of the multipart response

through the long-lived connection. The multipart content type was designed

for large responses, such as images. In XHR streaming this content type is

re-purposed to use it as an asynchronous downstream channel. Unfortunately

not all browser engines accept multipart responses and keeping the connection

open brings up major performance issues for the server.

Inline frame Streaming The Hypertext Markup Language (HTML) <iframe/> ele-

ment allows nesting of HTML documents. Inline frame streaming uses a hid-

den Iframe with the corresponding HTML document requested via chunked

transfer encoding. Chunked Encoding is a feature in the HTTP/1.1 [FGM+99]

specification, allowing a server to start sending a response before knowing

its total length. This feature was originally intended for transfer and incre-

mental rendering of very large documents. It is put to use to incrementally

deliver data through an Iframe element in a series of chunks. Iframe stream-

ing pushes dynamically-generated content wrapped in a <script/> block to the

client. Browsers incrementally render chunked encoded documents after each

chunk is transfered. The technique basically consists of writing <script/> tags

16

2.2. Asynchronous Web Communication

request

Browser Server

response

<iframe/>, multipart-replace

event

event

event

Figure 2.6.: Comet HTTP Streaming

that call a function on the parent page as information becomes available to

push to the client. Not every browser behaves well with this method. In order

to avoid excessive peak memory usage, the Document Object Model (DOM)

nodes added to the Iframe are typically removed after they are rendered. Re-

sponses are easy to identify because their header contains Transfer-Encoding

chunked. The advantage of this technique is that it provides almost negligible

latency because it avoids HTTP and TCP/IP set-up and tear-down by reusing

a single long-lived connection. The disadvantage of this method is that it will

trigger a never-ending spinner or progress bar in most user agents, severely

hurting the user experience.

Long-Polling This technique lets the connection between browser and server (HTTP

request) sit idle either until the server has data to send or it times out. As

soon as data or a timeout is received by the client, it sends out another request

and waits for the next update. This technique dramatically decreases latency

and network traffic compared to regular polling mechanisms, which means it

efficiently disguises itself as a server-push technique. Figure 2.7 shows network

interaction sequence for long-polling.

Comet enables event driven web application design. As soon as an event notification

about state changes on the server reaches the client, JavaScript call-back functions

manipulate the DOM of the web page to display the newly available data or process

it in the background. However, the trouble with Comet is its lack of standard

implementation due to the varying levels of support provided by browser vendors

for XHR and Iframes, the two building blocks of Comet style communications. In

addition, there is a significant amount of overhead, both in terms of networking

and development, to manage two connections for communications. These costs

can introduce latency that limit the accuracy of the real-time communications they

17

2. Fundamentals

request

Browser Server

response event

request

response event

request

timeout response

Figure 2.7.: Comet Long Polling

provide. Additionally, browsers are often configured to limit HTTP connections by

domain. This further complicates the use of Comet as it often requires complex

techniques such as managing multiple domains.

Several web application development frameworks implement these techniques to

support server push. Popular examples are CometD3 or Socket.IO4. These frame-

works abstract from Comet techniques and expose interfaces to the developer that

provide asynchronous communication channel semantics between server and client.

Bidirectional-streams Over Synchronous HTTP

Stream oriented communication protocols such as XMPP rely on long-lived TCP con-

nections to enable an interactive session between entities. Unfortunately in many use

cases such long-lived connections are not desirable or even possible. Web browsers

communicate by definition exclusively over HTTP and are therefore constrained

to the request/response pattern. The XEP-0124 Bidirectional-streams Over Syn-

chronous HTTP (BOSH) [PSSAM10] defines a technology that emulates the behav-

ior of a long-lived TCP connection using a sequenced series of request and responses

that are exchanged over HTTP. Much like Comet, this technology re-purposes the

HTTP protocol to facilitate asynchronous web interaction. BOSH utilizes a spe-

cialized HTTP server called the Connection Manager, which translates between the

HTTP requests and responses and the stream oriented communication protocol, such

as XMPP. Figure 2.8 illustrates the architecture of BOSH. In order to provide asyn-

chronous communication between the client and the Connection Manager, BOSH

implements a mechanism similar to long polling. The Connection Manager does not

3http://cometd.org/
4http://socket.io/

18

2.2. Asynchronous Web Communication

unwrapped data stream

HTTP + <body/> wrapper

Server

HTTP
Connection Manager

Client

Figure 2.8.: BOSH architecture [PSSAM10]

respond to a request until it actually has data to send to the client. As soon as the

client receives a HTTP response from the Connection Manager it initiates another

request, thereby ensuring that the Connection Manager is always holding an open

request to push data down to the client.

The main purpose of BOSH is to provide clients, which cannot maintain arbi-

trary persistent TCP connections with a server, the ability to use a bi-directional

asynchronous communication channel. This makes BOSH a viable technology for

real-time web applications. The heritage of BOSH lays in the XMPP community, but

the payload of BOSH is not restricted to XML. Listing 2.3 shows an XMPP message

XML stanza wrapped in a BOSH enriched <body/> element of a HTTP body with the

corresponding HTTP header.

POST /webclient HTTP/1.1

Host: example.com

Content-Type: text/xml; charset=utf-8

Content-Length: 205

<body rid=’1573741822’ sid=’58896478’ xmlns=’http://jabber.org/protocol/httpbind’>

<message from=’contact@example.com’ to=’user@example.com’ xmlns=’jabber:client’>

<body>I said "Hi!"</body>

</message>

</body>

Listing 2.3: Example for a message stanza

19

2. Fundamentals

HTML5 WebSockets

The HTML5 WebSocket specification defines a single-socket full-duplex connection

for pushing and pulling information between the browser and server. At present,

WebSocket is the most advanced mechanism for facilitating full-duplex, real-time

communications on the web. It takes advantage of the upgrade header of the

HTTP/1.1 specification, which means its essentially a new protocol for communi-

cation. The IETF leads the efforts in standardizing the WebSocket protocol [Hic09],

Browser Server

GET HTTP/1.1
Upgrade: websockets
Connection Upgrade

HTTP/1.1 Switching Protocols
Upgrade: websockets
Connection Upgrade

Data frames

asynchronous, full-duplex

close control frame

close control frame

Figure 2.9.: Websocket connection life cycle

while the W3C hosts the WebSocket API specification [Hic10]. These two specifica-

tion aim to expose raw socket communication to runtimes, such as JavaScript while

respecting constraints of the web, such as security, firewalls and proxies. WebSockets

also require some level of server-side support as there is an initial handshake over

HTTP that is required in order to upgrade an existing HTTP connection to a TCP

socket like connection. Figure 2.9 illustrates the life cycle of a HTTP connection

upgrade to WebSocket connection

It is by far the most comprehensive solution for delivering real-time information

over the Web. However, there is often the question of availability in regards to

WebSockets. At the moment, browsers engines such as WebKit and Gecko support

both WebSocket specifications to some degree. As of the date of this work, Microsoft

Internet Explorer does not support WebSockets, therefore relying only on this new

technology is infeasible.

Several web application frameworks propose fallback solutions for asynchronous

20

2.3. Mobilis Service Environment

communication. In the case where the most advanced technology is not supported

by either the client or the server, the framework falls back to more basic techniques

such as Comet streaming or long-polling.

2.3. Mobilis Service Environment

The Mobilis Project is a joined effort between Technische Universität Dresden and

Pontif́ıcia Universidade Católica do Rio de Janeiro to build a service-oriented mid-

dleware platform for mobile real-time collaboration applications. Springer et al.

[SSB+08] define a conceptual architecture for mobile collaboration systems. They

propose several services for collaboration functionality placed on multiple layers.

Schuster et al. [SKS+09] refine this conceptual architecture by realizing a service-

based platform using XMPP as the underlying communication technology. In addi-

tion to the environment, the authors present a set of reusable collaboration services.

The Mobilis Service Environment refined in [Lüb11] is going to serve as the main ser-

vice provider for the concept and implementation in this work and will be introduced

in the following section.

Due to the real-time requirements, all communication in the Mobilis Service Envi-

ronment is realized via XMPP. The XMPP infrastructure acts as a black box deliver-

ing structured messages between Mobilis client applications and the Mobilis Server .

All services in the environment are represented as XMPP entities with their respective

JID and are approachable via standard XMPP communication mechanisms, there-

fore acting as regular XMPP clients. On the client application side, all collaboration

participants are addressable via a JID (also regular XMPP clients), including the

resource identifier, allowing for multiple simultaneous connections (devices and/or

locations) per participant. Figure 2.10 illustrates the configuration of the Mobilis

Service Environment, which provides a scalable infrastructure for client applications

to connect to Mobilis Services to implement collaborative functionality.

Services exist on three layers. The topmost layer contains the Coordinator Service

which uses the service discovery extension XEP-0030 [HMESA08] to find App-specific

services and Generic Mobilis Service on the subjacent layers. An App-specific Ser-

vice bundles functionality incorporated by mobile collaborative applications. All

App-specific Services are registered with the Coordinator Service in order to be

found during discovery. The lowest layer provides several collaboration services that

implement the actual functionality of the platform and are ready to be reused by

App-specific Services or directly by the Mobilis client application to form the ap-

plication logic. This service-based implementation of collaborative functionality in

combination with a standard XMPP server architecture allows for high flexibility,

scalability and extensibility.

21

2. Fundamentals

Mobilis Server

Openfire
XMPP-
Server XMPP Smack (XMPP Client Library)

Grouping Service

Media Repository
Service

Media Content
Service

Coordinator Service

Mobilis
Client
Appli-

cations

X
M

P
P

Se
rvice

D

isco
ve

ry
G

e
n

e
ric M

o
b

ilis
Se

rvice
s

A
p

p
-sp

e
cific

Se
rvice

s

MobilisLocPairs Service

MobilisTrader Service
MobilisXHunt Service

User Context
Service

Shared Editing
Service

Database

MobilisBuddy Service

MobilisMapDraw Service

Figure 2.10.: Mobilis Service Environment [Lüb11]

2.3.1. Mobilis Services

Lübke [Lüb11] implements the aforementioned architecture using OpenFire as the

XMPP server and Java as the development platform for the MobilisServer. In addi-

tion to the server implementation, Lübke also presents a framework for development

of mobile social software for the Android platform. The Following collaboration

services are incorporated into the Mobilis Service Environment.

User Context Service The User Context Service [Lüb11] maintains arbitrary in-

formation defining the user’s context. Context information is of personal,

physical or technical nature and is stored as key/value pairs in context trees.

Each node in the context tree represents a specific piece of information such as

the location of the user or specific characteristics of the user’s device. Every

node is addressable via the user’s Jabber ID (JID) and the respective path,

such as device/display. Updates to the context tree are distributed using the

publish/subscribe semantic.

Grouping Service The Grouping Service basically implements the concept of Loca-

tion Based Group Formation [LSS11]. A distinctive feature of this service is

the consideration of time restriction in addition to location information of the

user. Therefor the user’s ability to join or even learn about a group depends

on both values, location and time.

Media Repository and Content Service The Repository Service and the Content

Service [Söl09] provide media sharing capabilities, especially for sharing pic-

tures with attached meta information, such as location and time of shoot.

22

2.4. State-of-the-Art

Users interact with the Repository Service to manage meta information while

the Content Service is responsible for storing the actual media data in the back-

ground. Together they enable the user to up-/download, delete and browse

media files.

Shared Editing Service Hering [Her09] designs a shared editing service facilitating

synchronous collaborative work on documents among collocated or geograph-

ically distributed participants. One important design goal is the support for

a variety of document types and use cases. Therefor the service is based on

the Collaborative Editing Framework for XML [YI03] and adds special con-

currency control for the mobile use case. Collaboration sessions are realized

as XMPP MUCs. Local changes of each participant are broadcasted immedi-

ately as groupchat messages in order to keep a consistent version among all

participants. Every participant is able to detect and solve update conflicts.

The Shared Editing Service acts as a regular MUC participant maintaining

a consistent local copy of the shared document to accommodate late-joining

participants.

2.3.2. Mobilis Beans

An integral part of the Mobilis Server are the Mobilis Beans. This component holds

a bunch of structures that implement service specific protocols which describe valid

messages and rules for exchanging those messages for Mobilis Services. All XMPP

messages that are exchanged are composed and parsed here. Service developers can

re-use Mobilis Beans on both the server and client side. The greatest advantage of

these components is the consistency of service specific protocol use, since Mobilis

Beans provide clearly defined interfaces on both ends of the XMPP communication.

The goal of this work is to design and implement a web gateway for the Mobilis

Service Environment supporting web client development for Mobilis applications.

2.4. State-of-the-Art

In this section, we take an in-depth look at state-of-the-art solutions and recent

research efforts related to the objectives of this work.

2.4.1. Related Research Activities

The field of real-time eCollaboration has garnered a lot of attention throughout

different research groups for more than a decade. There are early solutions for

23

2. Fundamentals

eCollaboration systems [RG96], even for web-based [BHT97] and mobile collabo-

ration [BLH01]. However, feature rich web-based collaboration software was not

realized until the Web 2.0 phenomenon and its innovative use of technology changed

the World Wide Web [MW10]. In combination with real-time web techniques the

web browser constitutes a legitimate platform even for synchronous collaboration

[GLG11]. In this section we will investigate recent related research activities.

Real-Time Collaborative Browsing Yue et al. [YCW09] propose a pure browser-

based framework that elevates web browsing from a heavily isolated Internet activity

to a real-time collaborative experience. Real-time Collaborative Browsing (RCB)

allows participants to browse the same webpage in a collaborative session. RCB

sets itself apart since it is neither server- nor proxy-based and it is not built on top

of another collaboration platform. In order to enable a collaborative session, the

hosting web browser incorporates the RCB-Agent, implemented as a Firefox browser

extension. This component is approachable by all participants via the Ajax-Snippet,

which is served by the agent. The participant poll in pre-determined intervals the

RCB-Agent for updates on the host. All actions on the host are monitored by the

agent and distributed to the participants. The main disadvantage of this solutions is

the unidirectional broadcast of user action and the poll characteristic of the update

mechanism. The proposed solution does not overcome the limitations of HTTP

and is restricted to a poll-based synchronization model. Even though the interval

is set to one second, collaborative messages are technically not distributed in real-

time. Additionally the poll-based model introduces scalability issues into the system

design.

Augmented Reality Gutierrez et al. propose in [GNS+11] fAR-Play, a platform

to support the development of a variety of Augmented/Alternate Reality Games

(AARG). The framework incorporates a mobile client application, a game status

web site, the game engine and an authoring environment. The game engine imple-

ments the game logic and stores all relevant information in a database and exposes it

over RESTfull web services. Mobile client applications communicate with the game

engine over HTTP. Information about the state of the game are pulled in a non-

blocking fashion via Ajax. The game engine provides besides a RESTlet Engine a

web server that serves the mobile client application Ajax calls and the web site that

holds the status of the game. fAR-Play provides excellent support for application

development and a complex infrastructure to realize AARG. Additionally this archi-

tecture is based on pure web technologies which makes it accessible through HTTP

on mobile devices and standard web browser. However, the main disadvantage is

the lack of real-time notification mechanism of state changes.

24

2.4. State-of-the-Art

Server push with instant messaging Pohja introduces in [Poh09] a server push

system using XMPP technology to overcome the lack of real-time notification of

state change that the previous works suffer from. The system uses an additional

component to the regular web application architecture called push server. The push

server is an XMPP server whose address is served to the client by the web server.

On the client side the proposed system includes, besides the regular browser, an

XMPP client and an update handler. The XMPP client subscribes after initial page

request (which responds with XMPP server details) to a publish/subscribe node on

the XMPP server and is notified in real-time of any state changes. The system relies

on the pure push paradigm of XMPP and provides information delivery to the client

with low latency. Unfortunately, this server push system requires an additional

client component in the XMPP client, which is not compliant to web standards.

Additionally, the use of an additional piece of proprietary software, beside the web

browser, is not feasible for a web application architecture.

Collaborative web-base mapping of real-time sensor data Dagher et al. present

in [DGI11] a framework that allows displaying real-time sensor data within a collab-

orative web-based environment. The framework augments a JEE-based publish/sub-

scribe architecture to provide a social and collaborative online environment based on

real-time data. The system relies on the Open Layer API in conjunction with an in-

house platform called UC-IC to display real-time data from a large variety of sources.

UC-IC offers a flexible environment for collaborative application development by pro-

viding the ability of recreate a familiar desktop environment and real-time server

push capabilities. Real-time data is provided by a publish/subscribe semantic based

on JBoss Messaging, a Java Messaging Service (JMS) server. UC-IC acts as a client

proxy subscribing to real-time data and uses Comet techniques to push the data to

the web browser. Although, Comet provides asynchronous transport mechanisms,

the JMS based system itself updates data from the sensors with polling semantics.

Therefore, data is technically not provided in real-time. An additional disadvan-

tage is the use of different systems, along with different data formats (Sensor, JMS,

Comet) which introduces unnecessary complexity and scalability issues.

R-U-In Banerjee et al. present in [BCD+09] R-U-In?, a real-time activity-oriented

social networking system. R-U-In? integrates popular social networking portals

providing real-time interests and presence management. The core components is

a Java-based application on a IBM Websphere Application Server that implements

the User Interaction Manager (UIM). The UIM provides adapters to aggregate real-

time information from various sources, such as social networks, instant messaging

services, and SMS. Each adapter communicates with the IBM Presence Server which

provides the real-time information through a publish/subscribe mechanism. The

25

2. Fundamentals

Interaction Manager on the other hand subscribes to data updates and forwards

them through various channels, such as instant messaging, TWSS (3G devices) or

HTTP. Unfortunately the HTTP channel is not push based and therefore does not

provide real-time update of web clients. However, the aggregation of information

from various sources to provide a single real-time data stream is promising.

2.4.2. Collaboration Tools

In addition to research activities, we investigate state-of-the-art collaborative tools.

The presented solutions include open-source projects and commercial products. We

pay special attention to a specific set of features and the respective degree of support

in every solution. Features such as real-time capabilities, development support,

mobile clients and implementation of various collaboration services are examined.

Section 2.4.3 provides an overview of all mentioned collaboration tools and draws a

conclusion.

Google Wave The Google Wave Protocol enables near real-time communication

and collaboration in large-scale networks. Communication is based on hosted con-

versations, so-called Waves. All forms of collaboration, such as regular conversations

or editing shared objects are contained in a wave and are hosted on a wave server.

[LT09] introduces the Google Wave Protocol over XMPP that allows near real-time

propagation of wave updates between Wave Providers. The heart of every collabo-

ration session is the Wave which consists of XML documents. Waves are hosted by

Wave Providers which are identified by their Internet Domain Name. Wave Users

have Wave Addresses which consist of the username and a wave provider name.

Each Wave has a list of participants and is hosted (maintain a copy) by all Wave

Providers that have at least one registered user participating on that Wave. Due

to sophisticated implementations of Operational Transformation [WML10] a Wave

supports concurrent modification. Waves are modified through operations that are

exchanged between the client and server. The Google Wave Protocol provides a

mechanism to update the Wave Providers of all participants with very low latency.

How a Wave Provider pushes the updates to the client is not defined in the spec-

ification. Google provides a web-based client application [Goo09] to participate in

a collaborative session. In order to makes use of the real-time capabilities of the

Google Wave Protocol a real-time web framework is used. Techniques like XHR-

and Iframe streaming, long polling and WebSockets are possible. The Google Wave

Protocol does not provide a framework to implement custom services or support for

efficient client application development. The lack of mobile client applications is

also noticeable.

26

2.4. State-of-the-Art

Twiddla [Twi10] is a commercial real-time online collaboration tool. It is entirely

browser based and uses Comet and WebSocket technologies for asynchronous com-

munication. Provided services include instant messaging, media sharing, voice con-

ferencing and shared editing. The system does not include support for application

development or mobile clients.

Colaab [Ltd09] is a web-based real-time collaboration space incorporating instant

messaging, voice conferencing and media sharing. The system requires Microsoft

Silverlight for real-time semantics making it one of the plug-in based solutions men-

tioned in Section 2.2. Mobile clients are not supported and Colaab does not provide

any extensibility or development framework.

Smyle: social collaboration application Drakontas introduces a social collabora-

tion application called Smyle [Dra11]. The platform offers a variety of collaboration

services, such as instant messaging, location sharing, shared editing and media shar-

ing. Client applications include a web-based interface and native application for

the Android platform. The system broadcasts all updates via the publish/subscribe

semantic in real-time. Smyle uses XMPP as the underlying communication technol-

ogy. For the web client BOSH is used to achieve asynchronous communication over

HTTP. However, Smyle does not provide support for application development or

extensibility and therefore limits the user to the fixed feature set the system offers.

Convore [Inc11] is a real-time communication tool that offers group chat and social

network integration. The system is entirely browser based and does not require a

third party plug-in. In addition to the web interface Convore also provides a mobile

application for the iOS platform.

SAP Streamwork [SAP11] is a commercial collaborative decision making tool.

The web-based system offers instant messaging and document sharing tools and is

well integrated in existing enterprise applications offered by SAP . StreamWork also

integrates with Google’s OpenSocial specification and allows third-party developers

to write or port applications to the environment through REST APIs.

Oracle WebCenter Real-Time Collaboration [Ora10] is a commercial product en-

abling users to connect and collaborate with others via instant messaging, web and

voice conferencing. This solution is well integrated in other Enterprise 2.0 services

available in Oracle WebCenter. Client application platforms range from desktop

operating systems such as Windows and Mac OS and mobile platforms.

27

2. Fundamentals

Open Cooperative Web Framework [The11] provides excellent support for de-

velopment of cooperative web applications. The main focus of this framework is

the concurrent real-time interaction among remote users and external data sources.

Familiar techniques to enable real-time web, such as WebSockets and Comet are

supported. Although this web framework facilitates the infrastructure and resources

that are necessary for a successful collaborative web application, the main drawback

is the lack of collaborative services.

PowerMeeting [Wan08] is a web-based synchronous groupware framework based

on the CommonGround toolkit. The system relies entirely on web standards and fa-

cilitates Comet techniques to provide real-time broadcast of user interactions. The

CommonGround toolkit employs a transactional replicated architecture providing

user management, session and group management, replication and transaction man-

agement and persistence management. The PowerMeeting framework offers on top

of this toolkit a skeleton for flexible, customizable and extensible development of

groupware applications. Performance, scalability and rich user experience are main

design goals for this framework. However PowerMeeting does not provide client

applications optimized for mobile devices.

Jive Engage platform [Sof11] is a social business software platform. Jive integrates

social networks and collaboration services to improve productivity in different de-

partments of an enterprise. The main feature is communication with customers,

employees and social networks integrated in regular workflows. It enables rich pres-

ence and connects with various collaboration software for employees to work together

or engage customers.

OneSocialWeb [Gro11] is an effort to connect existing social networks and make

them work together in a user centric way. The system is based on XMPP to stream-

line delivery of personally identifiable information from different social networks.

Service specific data formats are translated into XMPP messages in order to be ex-

changed between networks. Direct user interaction from one network to another is

also supported. However, information is not distributed in real-time.

2.4.3. Conclusion

Table 2.1 clearly illustrates that none of the discussed solutions offer the entire set

of desired features, provide services for all collaboration tasks and support generic

collaborative application development. Either solutions support application devel-

opment but have no collaboration services available for reuse, or collaborative func-

tionality is built in, but the systems are not extensible or provide support for devel-

28

2.4. State-of-the-Art

F
ra

m
ew

or
k

M
ob

il
e

C
ol

la
b

or
at

io
n

R
ea

l-
ti

m
e

In
st

an
t

M
es

sa
gi

n
g

M
u

lt
i

U
se

r
C

h
at

U
se

r
C

o
n
te

x
t

M
ed

ia
S

h
ar

in
g

G
ro

u
p

F
o
rm

a
ti

o
n

L
o
ca

ti
o
n

-b
a
se

d
se

rv
ic

es

S
h

ar
ed

E
d

it
in

g

Google Wave � � X X X X X � � X

Twiddla � � X X X X X � � X

Coolab � � X X X X X � � �

Smyle � X X X � X X X X X

Convore � X X X X � � � � �

SAP Streamwork � X � X X � � X � X

Oracle WebCenter � X � X X � � X � X

OCWF X � X � � � � � � �

PowerMeeting X � X � � � � � � �

Jive Engage X � X X � X X � � �

OneSocialWeb X � � � � � � � � �

Mobilis Platform X X X X X X X X X X

Table 2.1.: Features of web-based eCollaboration tools

29

2. Fundamentals

opment. Additionally the lack of mobile collaboration integration is noticeable for

the majority of solutions.

In this work, we present a web application development framework augmenting

the Mobilis platform in order to support all aforementioned functionalities in one

system. The next Chapter is dedicated to an extensive requirement analysis to build

a system that eliminates all shortcomings of the state-of-the-art solutions.

2.5. Summary

In this chapter we introduce technologies essential to the work at hand. We present

XMPP as a extensible communication platform that provides real-time message ex-

change in a federated server architecture. Beside addressing mechanisms and general

security functionality, we mention the three message types (<message/>, <presence/>,

<iq/>) and the respective usage. XMPP Extension Protocols are also covered.

In Section 2.2 we discuss asynchronous web communication. After defining the

characteristics of asynchronous interaction, we introduce three different approaches

to achieve real-time web. First, Comet is mentioned as an umbrella term for dif-

ferent server push techniques, such as XHR streaming, inline frame streaming and

long-polling. Second, we present Bidirectional-streams Over Synchronous HTTP as

a protocol to emulate stateful asynchronous connections over multiple individual

HTTP request/response cycles. Last, we introduce WebSockets for true full-duplex

socket communication between web server and web browser.

The Mobilis Project along with the Mobilis Service Environment is the focus of

Section 2.3. We introduce the service oriented platform with special attention to

the Mobilis Services. Mobilis Beans are mentioned briefly.

The last section provides an in-depth discussion of the state-of-the-art. First, we

present related research activities with focus on real-time web collaboration systems.

Second, we list state-of-the-art web-based collaboration tools. Both commercial

and open-source solutions are covered. Section 2.3 and Table 2.1 summarize the

discussion.

30

3. Requirement Analysis

In the previous chapter we provided a state-of-the-art analysis and drew the conclu-

sion, no service based mobile collaboration platform incorporates a generic develop-

ment framework for web-based client application. As discussed in the introduction,

providing a web client to a mobile collaboration system has numerous advantages.

The ratio between development cost and potential reach of customers is phenomenal.

However, before we present a conceptual design for such a web gateway we perform

in this chapter a comprehensive requirements analysis, including both functional

and non-functional requirements.

3.1. Functional Requirements

This section discusses functional requirements to define what functionality the frame-

work is supposed to provide. Each functionality is given an ID and a priority. These

requirements are closely geared towards the services provided by the Mobilis Service

Environment. The term web client in the following is used as a placeholder. It repre-

sents the actual framework which must provide the APIs for the listed functionalities

to be implemented in web applications.

Users of collaboration applications need to communicate with each other. Web

clients must provide essential instant messaging functionality (FUNC-1). All mes-

sages must be delivered in real-time to the recipient’s instant inbox. Communication

should be possible between users as well as between client and server. The addressing

schema must be adopted from XMPP.

Information broadcasts from the Mobilis platform rely heavily on the publish/sub-

scribe functionality of XMPP and the XEP-0060 (Publish Subscribe). Web clients

must be able to perform basic actions that are necessary for a publish/subscribe

system (FUNC-2). They need to be able to subscribe to, unsubscribe from and pub-

lish nodes. Information that is published by another user must be delivered to web

clients in real-time as long as the user is on the subscriber list of the publishing

node.

Presence information of participants is of utmost importance for collaboration

services. Users connected through a web client must be able to propagate their own

presence, subscribe to other user’s presence and maintain a friends list (FUNC-3).

Presence information includes offline and online plus a customizable status messages

31

3. Requirement Analysis

ID Description Priority

FUNC-1 Instant Messaging (user-to-user, client-to-server) high

FUNC-2 Publish Subscribe high

FUNC-3 Presence Management high

FUNC-4 Multi-User-Chat high

FUNC-5 User Context Management high

FUNC-6 Group Management high

FUNC-7 File/Media Sharing middle

FUNC-8 Shared Editing low

FUNC-9 Service Discovery high

FUNC-10 Social Network Integration middle

Table 3.1.: Functional requirements

(e.g.do-not-disturb).

Web clients must be able to participate in MUCs (FUNC-4). Necessary actions

include, join, leave and create a MUC. Characteristics of MUC are presented in

Section 2.1.3.

Another important functionality that mobile social collaboration applications fa-

cilitate is user context management. In order to assure adaptability of services, web

clients must be able to manage its user context (FUNC-5). Context information, such

as location or the device used, must be available for the web client to communicate

with the Mobilis platform.

Grouping mechanisms are an important part of many social networks. Also for

collaboration between users, group functionality is very useful. Web clients must be

able to connect to the grouping service and support all actions, such as create, join,

leave and browse groups (FUNC-6). A web client has to incorporate its own context

information with the grouping service.

File and especially media sharing is a popular application in mobile social soft-

ware. Users must be able to browse the file repository, up-/download and annotate

files(FUNC-7). Meta data such as time and location must be editable.

Web clients must also enable the user to discover available services of the Mobilis

Service Environment(FUNC-9). Additionally, it must be possible to query for specific

service and versions of services.

32

3.2. Non-functional Requirements

3.2. Non-functional Requirements

In order to provide a solid system design and high quality implementation, it is

crucial to analyze non-functional requirements.

The framework must be generic in nature (NONF-1). That means, a developer

must not be restricted in their choice of architecture for web client application. The

framework must support the developer with all features listed in the previous section

no matter which implementation concepts are followed.

ID Description Priority

NONF-1 Generic Framework high

NONF-1.1 Extensibility high

NONF-1.2 Reusability high

NONF-1.3 Interchangeability middle

NONF-2 A-Grade Browser Compatibility high

NONF-3 A-Grade Mobile Browser Compatibility high

NONF-4 Native Web Technologies (HTML, CSS, JavaScript) high

NONF-5 Real-Time Bidirectional Communication high

NONF-6 Security high

Table 3.2.: Non-functional requirements

Additionally, the framework has to be extensible (NONF-1.1), reusable (NONF-

1.2), and interchangeable (NONF-1.3). New functionality must be easy to add, espe-

cially client protocols for new services in the Mobilis Service Environment. Individ-

ual components of the framework must be designed for reuse by other components to

provide richer functionality. Implementations of features should be interchangeable,

therefore clean interfaces need to be defined.

Implementations that are provided by the framework for employment in web

clients must be both desktop and mobile browser compatible (NONF-2, NONF-3).

Browsers listed as A-Grade browsers by the Graded Browser Support chart main-

tained by Yahoo! [YAH11] must be supported.

The next important non-functional requirement is the exclusive use of native web

technologies, such as HTML, CSS and JavaScript (NONF-4). Third party plug-ins,

such as Flash and Silverlight must not be necessary to meet functional requirements.

Communication between the web client and the Mobilis Service Environment must

be carried out in real-time. Messages have to be delivered with very low latency in

both directions (NONF-5).

Security is the last non-functional requirement (NONF-6). Communication chan-

nels must be encrypted and entities must be authenticated using modern standards,

33

3. Requirement Analysis

such as TLS and SASL.

3.3. Summary

If all of the functional and non-functional requirements are met, an effective develop-

ment framework for web clients for a mobile collaboration platform can be created.

Each of these requirements are addressed in the conceptual design.

34

4. Conceptual Design

In this chapter we present the conceptual design for a web gateway to mobile col-

laboration services. We rely heavily on the technologies and concepts introduced in

Chapter 2. We start with a discussion about different real-time web techniques and

their applicability in our system, especially with the endgoal in mind, to connect

web applications with the XMPP-based Mobilis platform. We continue with provid-

ing an overview of the general architecture and introduce individual components in

detail.

4.1. XMPP and the Web

Mobile social software, such as MobilisGroups [LSS11] depend on the real-time mes-

saging capabilities of XMPP. The Android based Mobilis client applications employ

Mobilis XMPP on Android (MXA) in conjunction with the Smack API1 to establish a

native XMPP connection over TCP in order to interact with the Mobilis Service Envi-

ronment. The full power of TCP socket communication is exploited for bi-directional

exchange of collaboration messages. Users are able to communicate, coordinate and

collaborate in a social environment in real-time.

Due to the security and compatibility focused design of HTTP, the world of web

application development is restricted to APIs and the sandbox that web browsers

provide. Unfortunately none of the major web browsers available today provides an

API for native communication over XMPP. This inadequacy is compounded by the

fact that XMPP and HTTP are fundamentally different communication protocols.

The main discrepancy between the two protocols is the way clients and servers

interact with each other. HTTP follows a strict synchronous request/response inter-

action pattern, while XMPP communicates over a long-lived (e.g. TCP) connection

that runs through well defined states. Both XMPP client-to-server and server-to-

server connections are long-lived and kept open as long as the session is needed.

This stateful connection is contrary to the individual request/response cycles of

HTTP. With HTTP, the client and server have clearly defined roles. Clients are the

only instances that are able to initiate a request. Servers are not allowed to insti-

gate communication. Because of this one-way paradigm, no always-on channel is

1http://www.igniterealtime.org/projects/smack/

35

4. Conceptual Design

HTTP XMPP

state stateless stateful

interaction request/response duplex

paradigm polling event-driven

native browser support yes no

Table 4.1.: Differences between communication protocols

available for the server to push data down to the client. In XMPP, it is a completely

different story. Once an XMPP connection is established the entities may exchange

an unbound number of messages back and forth in both directions asynchronously.

XMPP based applications follow a rapid-fire, event-driven approach which can be

confusing at first to developers who are more accustomed to traditional web de-

velopment. However, it has a number of advantages with regard to collaboration

systems. Table 4.1 summarizes the key differences between HTTP and XMPP.

Our design goal is to develop a web-based gateway that interacts with mobile

social software, which is based on the Mobilis platform. Requirement NONF-4 ties

us to native web technologies. However, requirement NONF-5 demands real-time

bi-directional communication capabilities for the web client to ensure a social collab-

orative user experience. Social software is all about the content that is dynamically

created by users. Collaboration software even demands that this content is broad-

casted to all participants without any latency. Users should be able to consume

information as soon as it is produced by another user. Event and state changes

should be pushed asynchronously to the consumer in real-time.

HTTP XMPP Web Browser Web Server

Figure 4.1.: Major components of the Architecture

We introduced in Section 2.2 several techniques that facilitate asynchronous com-

munication over HTTP. In the following section we discuss the three aforementioned

approaches and their applicability for our design. Subject to investigation are Comet

techniques, WebSockets and BOSH. Figure 4.1 illustrates the necessary components

36

4.1. XMPP and the Web

of our architecture and the communication protocols used. This basic diagram serves

as the basis for discussion and will be augmented for each approach.

4.1.1. Comet

The main strength of the Comet technique is event and state change notification

transport from the server to the client over HTTP with low latency. The browser

does not need to employ any plug-ins and can work with standardized APIs. In

addition to that, Comet techniques even facilitate bi-directional asynchronous com-

munication with the use of a second HTTP connection. These features comprise a

solution to overcome some of the differences between HTTP and XMPP. Interaction

patterns with Comet resemble XMPP communication much more than traditional

HTTP-based interaction. Messages which are sent from the XMPP network to the

entity that is connected via the web client can be delivered over a long-polled HTTP

connection or with one of the Comet streaming techniques. Both alternatives deliver

messages in near real-time to the web browser.

The other difference we identified between XMPP and HTTP is state. Modern web

applications are able to keep state with server-side session management and client-

side cookie management. Therefore, independent request/response round trips via

HTTP can be united to a stateful connection. This fact is important for our design

and enables a bridge between HTTP and XMPP.

Figure 4.2 illustrates the architecture using Comet techniques.

XMPP

Web Browser Web Server

Comet
engine

XMPP
client

data
transformation

session
management Comet

client

Figure 4.2.: Architecture using Comet techniques

A component that lives in the application server functions as a regular XMPP

client, streaming stanzas via a long-lived TCP connection with the Mobilis plat-

form. An integral part of this design is an adapter that transforms XMPP stanzas

into a data format that can be pushed via Comet techniques to the client. Most

Comet implementations rely on the Bayeux[RWDN07] protocol, which uses its own

data format. However, the transformation code used to bridge the origin protocol

(XMPP) to Bayeux (JSON-based) brings an unnecessary performance overhead into

our system by forcing a message to be interpreted and process prior to being sent

37

4. Conceptual Design

over HTTP. For every user connected to the web application, the server needs to hold

one separate XMPP client component to provide the semantics of a native XMPP

connection. One major issue with this design is load balancing on the web server.

The server must manage two HTTP connections (holding one open as the push chan-

nel and the other for upstream requests) and one XMPP connection per user. On

top of that, it needs to manage the respective code transformation. Web servers

usually create one thread per request. However, an HTTP based Comet solution will

have an outstanding request waiting on the server to be used to send a response to

the client the instant an asynchronous event occurs. This will break the thread per

request model. Better technologies are needed on the server side in order to serve a

growing number of client requests.

In addition to that, presence information for each client needs to be managed,

since clients are not bound by any real stateful connection to the web server. This

non-trivial architecture is able to bridge XMPP to the browser over HTTP, but comes

with a significant price.

Additionally, adherence to the numerous XEPs pose another problem with this

design. In order to implement the XEP-0096 (Si File Transfer) for example, we have

to develop a complex adapter that transforms the XMPP managed to Comet-base

self-managed file transfer.

Comet certainly is a technique we can base our framework on, but considering the

disadvantages we proceed to find better and more viable approaches.

4.1.2. WebSockets

The WebSockets protocol is a bi-directional protocol that provides a simple message-

based framing layer over raw sockets and allows for more robust and efficient com-

munication between a browser and a server. After the initial handshake and the

following upgrade of the HTTP connection, server and client are free to exchange

data frames independent from each other. This full-duplex communication channel

provides a suitable basis for bridging a web client to the XMPP network. The Web-

Socket API provides an onMessage event for JavaScript to handle incoming messages,

which serves the even-driven characteristic of an XMPP-based application well. Once

the WebSocket connection is established, client and server can basically exchange

any data packets, either text or binary. Therefore, the messages received by the

server (XMPP) can be the same message delivered to the browser, eliminating the

complexity and performance concerns introduced by transformation code with the

Comet techniques.

Additional benefits and advantages of communication via WebSockets are the

elimination of the known Comet request/response mechanism overhead, and apart

from the initial handshake, the entire HTTP overhead. This leads to shorter latencies

38

4.1. XMPP and the Web

and higher bandwidth.

The main disadvantage, as of now, is the fact that WebSockets require some level

of server-side support for the initial handshake. This is required in order to upgrade

an existing HTTP connection to a raw TCP/IP connection. The lack of server support

along side the lack of browser support for the WebSocket API makes this approach

highly unattractive as a stand-alone solution.

The IETF internet-draft An XMPP Sub-protocol for WebSocket [Mof10] intro-

duces a sub-protocol for XMPP to enable entities to connect natively to XMPP over

WebSockets instead of regular TCP sockets. This protocol also defines XMPP con-

nection management over WebSockets. Unfortunately, this internet draft is at the

beginning stages of the standards track and not yet implemented in any client or

server libraries. Without this sub-protocol, the system design based on WebSockets

also lacks connection management like the Comet approach.

Figure 4.3 shows the necessary components of the architecture based on WebSock-

ets.

XMPP

Web Browser Web Server

Web-
Socket

XMPP
client

session
management

Web-
Socket

upgrade

Figure 4.3.: Architecture with WebSockets

As discussed, this design approach is not feasible at the moment, but there is very

high probability it will be the preferred basis for architectures bridging HTTP and

XMPP in the future.

4.1.3. BOSH

BOSH is designed to provide the semantics of a long-lived connection via multiple

independent HTTP request/response cycles. BOSH solves a different problem than

Comet or WebSockets. Its focus does not lie on enabling the server push, but rather

provide a stateful bi-directional communication channel over HTTP. Different types

of long-lived connections can be tunneled through HTTP with BOSH. For our archi-

tecture, XEP-0206 (XMPP over BOSH) [PSA10] is interesting. This XEP provides

an extension to BOSH that enables XMPP streams to be bound to HTTP over BOSH.

The protocol basically specifies what XML messages in the <body/> wrapper can be

39

4. Conceptual Design

exchanged and what messages are appropriate replies to others in order to establish

and maintain an XMPP connection.

The connection semantic that BOSH provides is very interesting for our system

design. XMPP over BOSH allows the web client to communicate with the XMPP

server through a native connection. The client connects through a standard Uniform

Resource Locater (URL) over HTTP on port 80. This request is then proxied by

the web server to a different port, which is operated by the XMPP Connection

Manager. As a result, the web client can operate from behind a firewall using

commonly supported web standards. The overhead of maintaining the long-polled

HTTP connections of BOSH is mostly handled by the Connection Manager rather

than the web server or the web application. We are able to establish a bi-directional

stream over HTTP between web clients and the Connection Manager, while the

Connection Manager works as a proxy to the Mobilis platform. The Connection

Manager itself communicates as a normal XMPP entity by streaming XML with

other entities. This way the web client is able to maintain a stateful connection to

the Mobilis Service Environment. Connection management, security and real-time

delivery of notification and state changes are all handled by BOSH and XMPP over

BOSH. Especially security of XMPP with encryption via TLS and authentication with

SASL is handled by BOSH. The use of BOSH enables our design to meet NONF-5

more than the previous solutions.

Web Browser Web Server

BOSH
Connection Manager

BOSH
client

proxied

Figure 4.4.: Architecture using XMPP over BOSH

The browser is able to send/receive presence information. Incoming stanzas for

the web client are sent over a long-polled HTTP request and trigger events on the

client side which are handled by a BOSH client library.

Since the entire Mobilis platform is based on collaborative services that are im-

plemented as regular XMPP clients, all content that needs to be processed by a web

client application is available through XMPP messages. It is conceivable to write

a fully featured browser-based Mobilis client application with no web application

server whatsoever. Figure 4.4 illustrates the architecture using BOSH.

The advantage of the BOSH powered approach over the first two designs, is the fact

40

4.2. Architecture

that on top of the asynchronous interaction mechanism that all three provide, BOSH

also facilitates necessary functionality for a long lived connection plus connection

management for XMPP.

Even if XMPP over BOSH is an emulation of push and not pure XMPP anymore, it

has many benefits over plain Comet since it contains other characteristics of XMPP,

such as security, the use of arbitrary XEPs and persistent connections even if the

underlying network connection is unreliable. This is especially important in the

mobile web application use case. Schuster et al. mention in [SSS10] that XMPP

is not well suited for wireless networking connections due to persistent connection.

BOSH addresses this inadequacy.

The main disadvantage is the need for the Connection Manager. It is an integral

component of BOSH. For web applications that are not connected to an XMPP

network whatsoever, the need of a Connection Manager might pose a problem.

Connection Managers are usually not implemented within a web server, but rather

within an XMPP server. This is different from Comet where most of the major

application servers support Comet protocols (e.g. Bayeux). However in our system

we are connected to an XMPP network and therefor have the Connection Manager

at hand.

A framework based on BOSH and BOSH over XMPP bring numerous advantages.

It enables us to met the requirements stated in Section 3. Disadvantages are non-

existent for our use-case.

4.2. Architecture

After the previous section discussed the pros and cons for different real-time web

technologies with regard to our framework design, we present in the following section

the architecture of the Mobilis web-gateway. Section 4.1 clearly drew the conclusion

that the most advantageous technology is BOSH and XMPP over BOSH. Following

this design decision, Figure 4.5 shows the architecture of the Mobilis platform aug-

mented with the web gateway. This figure provides a very coarse grained view of

the architecture to introduce the main components and communication protocols

between them.

All communication in this architecture is TCP/IP based. Android Mobilis client

applications directly open a regular TCP socket to establish a native XMPP connec-

tion to the XMPP server.

On the server side, the Mobilis Server , which incorporates the Mobilis Service En-

vironment, is also connected to the XMPP server. In this diagram, the XMPP server

and the Mobilis Server run on the same machine enabling direct communication

between them. Since Mobilis Services are implemented as regular XMPP clients, the

41

4. Conceptual Design

TCP/IP

Server Web Client

Web Browser

Connection
Manager

XMPP SERVER

HTTP

Mobile Client

Android MOBILIS SERVER

XMPP

Web
Server

Figure 4.5.: Mobilis Web Gateway Architecture

Mobilis Server and even individual services can be distributed on different physical

machines.

For the web client, we are limited to the APIs and the sandbox the web browser

provides. Therefore, it is impossible to open up a TCP socket and establish a native

XMPP connection. We split the communication in two separate logical channels.

First, all static content such as HTML, CSS and JavaScript is provided by a reg-

ular web server that responds to the initial HTTP request. Second, all following

request/response cycles are between the browser and the Connection Manager em-

ulating a long-lived bi-directional connection. This connection is used to transport

XMPP messages to and from the browser. Details concerning the protocol and the

exchange of messages will be provided later in this chapter.

With this architecture, we meet several of the non-functional requirements listed

in Chapter 3. For the web client we are exclusively using native web technologies,

namely HTTP as the transport protocol, HTML to specify semantics, CSS for the

layout and JavaScript for application logic, such as the BOSH client library (NONF-

4). The design also provides a bi-directional asynchronous connection between the

browser and the Connection Manager, and therefore XMPP (NONF-5).

To understand this design in detail, we will next drill down into the architec-

ture and present the individual components and their interaction. The Connection

Manager basically acts as a proxy for the web client towards the XMPP network. Ev-

42

4.3. Mobilis Web Client

erything beyond this point from the web client’s perspective is exactly like discussed

in [Lüb11]. All service interfaces are well defined through specific protocols encapsu-

lated in Mobilis Beans. Communication between the Connection Manager and the

Mobilis Server is equivalent to the Android-based client applications. Therefore, we

omit this part of the architecture for further discussion and concentrate on the web

client and its communication with the Connection Manager.

4.3. Mobilis Web Client

Figure 4.6 illustrates the structure of a web-based client for a Mobilis application.

The objective of this chapter is to present the conceptual design of a framework for

Mobilis web client development. A major design goal for the web gateway framework

is extensibility and reusability (NONF-1.1, NONF-1.2). This means we must provide

components that encapsulate functionality, such as real-time communication man-

agement, and interact via well defined interfaces. The framework must also provide

mechanisms to implement and integrate new protocols in case the Mobilis Service

Environment is extended with new services. In the following section we take an

in-depth look at necessary components and libraries that comprise our framework.

A web-based client for Mobilis applications that is built with our framework has

three main parts.

� The low-level XMPP Web Client , which is responsible for the communication

between client and server.

� The Mobilis Services Web Client , which consists of the backbone and core

functionality of the framework. Protocol implementations that are specific to

Mobilis Services are also part of this component.

� The Mobilis application logic, which is different for each Mobilis application.

It holds the user interface and the static content of the web client.

4.3.1. Event-driven Architecture

Before we discuss the individual components, it is important to mention that control

flow in Mobilis web clients is event-driven. In essence, our framework provides

abstraction from any kind of communication details and XMPP stanza exchange.

The framework takes care of establishing an XMPP connection, creating stanzas,

sending them over BOSH to the Mobilis Service Environment and triggering callback

events for incoming stanzas. Web client developers will only deal with asynchronous

APIs. This concept is important in order to understand how to use the proposed

framework. The way to use functionalities of the framework is mostly one of two

approaches:

43

4. Conceptual Design

Web Browser

Mobilis Web Client

XMPP Web Client

Mobilis Services Web Client

BOSH (XEP-0124, XEP-0206)

MobilisCore

Content

Grouping UserContext
Plug-in
adapter

Mobilis Application Logic

SN integration

XEP-0030 XEP-0045 XEP-0060

Figure 4.6.: Mobilis Web Client Architecture

� JavaScript functions are called to build and send stanzas, while callback func-

tions are passed as arguments to handle the event of incoming responses. The

following pseudocode demonstrates this type:

function (attr, callback, errback)

attr holds all neccessary information for the stanza to be communicated,

callback and errback are functions that handle the positive and negative re-

sponse stanza respectively.

� General event handlers can be defined to be invoked for incoming stanzas that

are received not as a response, but rather standalone messages such as message

or presence stanzas. The framework checks attributes of incoming stanzas and

triggers the appropriate event.

function (handler, namespace, name, type, id, from)

handler is the function that is called in case all parameters match. namespace,

name, etc. are the parameters to define which incoming stanzas trigger the

event.

Events that are triggered by user interactions or timed events are handled by the

application specific logic and are not the responsibility of the framework.

44

4.3. Mobilis Web Client

This design avoids any kind of blocking Remote Procedure Call (RPC) semantic on

the client side. An event-driven web client accommodates the processing of real-time

data very well. The application is never blocked and reacts in real-time to newly

available data. All the developer has to do is register the event handlers and define

callback functions. We now move on to introduce the components that make this

architecture possible.

4.3.2. XMPP Web Client

The XMPP Web Client is responsible for communication via a BOSH connection,

therefore implementing a BOSH client library. This library utilizes the XHR ob-

ject to transfer data via HTTP requests between the browser and the Connection

Manager. The Ajax engine of the browser is responsible for all HTTP requests to

the Connection Manager. Data is retrieved decoupled from user interaction. This

component is required for asynchronous web communication and is implemented in

all modern browsers. BOSH relies on the ability to send and receive HTTP messages

asynchronously. All communication runs through port 80 or 443 and is therefore

able to pass firewalls. With the implementation of XEP-0206 (XMPP over BOSH),

standardized authentication and encryption mechanisms can be used between the

client and the server. Besides the HTTP header, the <body/> element, which is aug-

mented with special attributes to control the session, is composed here. Listing 4.1

and 4.2 show an initial BOSH message that is sent by the client.

POST /http-bind HTTP/1.1

Host: mobilis.inf.tu-dresden.de

Connection: keep-alive

Referer: http://mobilis.inf.tu-dresden.de/webclient/

Content-Type: text/plain; charset=utf-8

Listing 4.1: Initial BOSH HTTP POST header

<body hold="1"

secure="true"

rid="2202968608"

xmlns="http://jabber.org/protocol/http-bind"

to="mobilis.inf.tu-dresden.de"

wait="60"

content="text/xml"

charset="utf-8"

xml:lang="en"

xmpp:version="1.0"

xmlns:xmpp="urn:xmpp:xbosh"/>

Listing 4.2: Initial BOSH HTTP POST body

45

4. Conceptual Design

The HTTP header indicates a regular POST request to http://mobilis.inf.tu-

dresden.de/http-bind which is the URL used to reverse proxy the Connection Man-

ager(more on that in section 5.2). The <body/> element features special attributes.

hold for example, indicates the maximum number of HTTP connection the Con-

nection Manager is allowed to hold open. secure indicates that TLS and SASL are

mandatory for this connection. rid is a request ID that is incremented for each

following request.

The server answers with an HTTP response that looks similar to Listing 4.3 and 4.4.

HTTP/1.1 200 OK

Content-Type text/xml; charset=utf-8

Content-Length 673

Keep-Alive timeout=5, max=99

Connection Keep-Alive

Listing 4.3: BOSH HTTP response header

<body xmlns="http://jabber.org/protocol/httpbind" authid="4cee67e8" sid="4

cee67e8" secure="true" requests="2" inactivity="30" polling="5" wait="60"

hold="1" ack="2202968608" maxpause="300" ver="1.6">

<stream:features xmlns="http://etherx.jabber.org/streams">

<mechanisms xmlns="urn:ietf:params:xml:ns:xmpp-sasl">

<mechanism>DIGEST-MD5</mechanism>

<mechanism>PLAIN</mechanism>

<mechanism>ANONYMOUS</mechanism>

<mechanism>CRAM-MD5</mechanism>

</mechanisms>

<compression xmlns="http://jabber.org/features/compress">

<method>zlib</method>

</compression>

<bind xmlns="urn:ietf:params:xml:ns:xmpp-bind"/>

<session xmlns="urn:ietf:params:xml:ns:xmpp-session"/>

</stream:features>

</body>

Listing 4.4: BOSH HTTP response body

The response initiates the security handshake between client and server that opens

the XML stream for exchanging stanzas. Supported SASL authentication mecha-

nisms are listed for example. The client answers the handshake with another HTTP

request initiating the SASL challenge response cycle. Once the handshake is com-

pleted, the client opens a new encrypted stream which is then used to exchange

stanzas, for example to request a resource, which is answered by the server with a

bind stanza of type result. Further HTTP requests must at least provide the

sid (Session ID), rid (Request ID) and the namespace http://jabber.org/protocol/

46

4.3. Mobilis Web Client

httpbind, so the Connection Manager can keep the long-lived connection semantic.

The XMPP Web Client provides an interface to send arbitrary XMPP messages

over the established connection. It also passes back all incoming stanzas for further

processing.

Besides the BOSH client, the XMPP Web Client holds implementations of three

XEPs that are used by the Mobilis Services. Section 2.1.3 introduced all three XEPs:

� Service Discovery (XEP-0030)

� Multi User Chat(XEP-0045)

� Publish/Subscribe(XEP-0060)

The functional requirements FUNC-2 and FUNC-4 are met with the implementation

of XEP-0060 (Publish Subscribe) and XEP-0045 (Multi User Chat) respectively. The

components employ the protocols discussed in those XEPs and enable the Mobilis

web client to use the extensions of XMPP easily. All extension implementations use

the interfaces provided by the BOSH client library.

XMPP Web Client is an integral component for our framework to support web

client development for Mobilis applications, since all real-time communication with

the Mobilis Server is encapsulated here.

4.3.3. Mobilis Services Web Client

The Mobilis Services Web Client is the main component of our framework. In Sec-

tion 2.3 we introduced Mobilis Beans. Mobilis Beans are a collection of structures

that implement service specific protocols which describe valid messages and rules for

exchanging these messages with Mobilis Services. The Mobilis Services Web Client

provides the same functionality for the web client. The same protocols and rules are

implemented here to compose valid service requests to the Mobilis Service Environ-

ment. In the following section we present the interfaces the individual components

provide.

Mobilis Core

The Mobilis Core is the base library for the Mobilis Services Web Client . Functional-

ities that every Mobilis web client needs are implemented here. After the XMPP Web

Client has established a connection to the XMPP network, Mobilis Core provides

an abstraction from the connection details (Mobilis.connection) and exposes simple

methods to send stanzas and define callbacks. Mobilis Core presents a completely

asynchronous API to higher components that implement the service specific proto-

cols. Mobilis Core allows for defining event handlers to react to incoming stanzas.

XMPP messages that match the defined attributes, such as the id, type or namespace,

47

4. Conceptual Design

trigger events that have handlers bound to them. Event handlers are implemented

as JavaScript callback functions that handle responses (or incoming messages). Mo-

bilis Core exposes a comfortable interface to the specific service implementations,

such as User Context. XMPP introduces three distinct types of stanzas that are used

for communication:

� <message/> provides information exchange between entities via a push mecha-

nism

� <presence/> broadcasts presence information of entities through a publish/sub-

scribe pattern

� <iq/> implements get and set semantic in a request/response fashion

FUNC-1 and FUNC-3 are met through handling the first two types of stanzas. <iq>

stanzas are the building blocks for XEPs and service specific protocols. In order to

meet further requirements Mobilis Core provides following methods:

Connect establishes an emulated long-lived connection to an XMPP server over

BOSH. Security policies, such as TLS or SASL are considered during the hand

shake process with the XMPP server (NONF-6). Parameters are the JID and

the password of the user. Additionally we can pass a callback function that re-

acts to status changes of the connection. Possible statuses include: connecting,

authorized, connected, disconnected, etc. For example, for the status connected

a service discovery could be performed to set namespaces and JIDs for all

Mobilis services.

Disconnect starts a graceful tear down process of the connection, including an un-

available presence broadcast. A reason for the disconnect can be passed as an

argument. The connection status callback is notified of the disconnect process.

Send takes an XML element as an argument and prepares the exchange of a corre-

sponding stanza over the BOSH connection. This method is for message and

presence stanzas since those types are not acknowledged and do not required

any response handling.

SendIQ allows to send IQ stanzas. Beside the <iq/> element this action takes two

callback functions as parameters, a callback for the successful response of type

result and another callback for response type error and for the timeout case.

AddHandler adds handlers for incoming stanzas to the connection. The follow-

ing arguments can be passed. The handler function and attributes, such as

namespace, name, type, id and from. The handler callback is called for any incom-

ing stanza that matches the parameters. A stanza has to meet all parameters

48

4.3. Mobilis Web Client

that are supplied for the handler to be invoked. A boolean return value of

the handler determines if it is invoked everytime (true) or just once (false) a

matching stanza arrives. The return value of addHandler is a reference to the

newly added handler.

DeleteHandler takes a reference to a handler as the argument and deletes the han-

dler from the connection. Incoming stanzas do not trigger this handler after

it has been deleted.

Another very important responsibility of Mobilis Core is the service discovery within

the Mobilis Service Environment. Since services of the Mobilis platform are ver-

sioned, we cannot rely on just the XEP-0030 (Service Discovery). Mobilis Core

supports the discovery protocol used by the Coordinator Service [Lüb11] and allows

following methods (FUNC-9):

MobilisServiceDiscovery performs a general discovery of services that are running in

the Mobilis Service Environment. The client is able to retrieve a complete list

of services or request information about a specific service. In order to retrieve

information about each instance of an App-specific service the latter option is

used.

CreateNewServiceInstance allows the creation of new service instances within the

Mobilis Server . Some services can be instantiated multiple times, such as

App-specific Services. The client can provide a name and a password for the

newly created service. Deleting a service instance is not supported since the

Mobilis Server implements garbage collection functionality for services that

are no longer in use.

In order to achieve better understanding of the event-driven nature of web clients

and how the different components interact, Figure 4.7 shows a sequence diagram for

a service discovery. All function calls in this example are of asynchronous nature.

Within the application logic either a user interaction event, timed event or other

event triggers the Mobilis.core.mobilisServiceDiscovery function call. As arguments

we pass two callback functions that handle each possible response type respectively

(result, error or timeout). Mobilis.core registers these handlers and then builds

an stanza that follows the protocol of the Coordinator Service. Mobilis.connection

.sendIQ send the IQ stanza within a BOSH <body/> wrapper to the Mobilis Service

Environment. IQ stanzas require a response <iq/> which is sent by the Coordinator

Service containing a list of all registered services. The incoming IQ stanza triggers

the callback event. The function that was added as the callback for a response

of type result is called by Mobilis.core. Since functions are first order objects in

49

4. Conceptual Design

JavaScript they can be passed as arguments. Therefore, the callback is called in

Mobilis.core but defined and executed in the App logic.

Details about each XML stanza that is exchanged will not be discussed in this

work. All stanzas have to comply with protocols that are defined in other works.

For example, connect and disconnect are defined in the BOSH protocol.

MobilisServiceDiscovery stanzas are defined by the Coordinator Service in [Lüb11].

For each namespace, we mention the associated work which defines the structure of

the stanzas.

mobilisServiceDiscovery

App logic Mobilis.Core Mobilis.Connection MSE

buildIQStanza

addCallbackHandlers

sendIQStanza

<iq type=get>...</iq>

<iq type=result>...</iq>

trigger callback event

call Handler

Figure 4.7.: Sequence diagram for MobilisServiceDiscovery

Section 2.3 listed services of the Mobilis Service Environment that are reused by

application specific services or employed by client applications directly. In the fol-

lowing section we present client implementations of those services within the Mobilis

Services Web Client .

User Context

The User Context component includes methods to satisfy requirement FUNC-5. Sec-

tion 2.3.1 introduced the User Context Service[Lüb11]. The following methods are

provided by the Mobilis Services Web Client to communicate with the User Context

Service.

Subscribe enables the client to communicate interest in automatic update notifica-

tions for a specific node in a context tree. The JID and a relative path are

passed as arguments to define the exact context information the user wants to

subscribe to. Every subscription requires an authorization by the publisher.

50

4.3. Mobilis Web Client

Unsubscribe cancels the existing subscription. The JID and path to the node are

required parameters for this method. Unsubscribe does not require any au-

thorization.

Authorization is a method to respond to an authorization request to a client’s node.

The result can either be a positive response (result) to indicate that autho-

rization has been granted or an error response for declining the request.

AddAuthorizationHandler handles incoming authorization requests. Parameters in-

clude the path to the node and a handler function. The return value is a

reference to the newly created handler.

DeleteAuthorizationHandler removes the authorization request handler that is ad-

dressed by the passed reference.

Publish allows the client to broadcast changes to one of its context nodes. Param-

eters for this method include the path to the node, a key/value pair and the

associated type for the node.

AddUpdateHandler provides an interface to register event handlers for incoming

message stanzas that represent updates to context information the client has

subscribed to. The parameters are the path to the node and a callback function

that encapsulates the handler logic. This method is important since update

notifications are broadcasted via regular message stanzas that are not sent as

a response. A reference to the created update handler is returned.

DeleteUpdateHandler deletes the handler that handles incoming update notifica-

tions. The reference to the handler is passed as an argument.

Grouping

We introduced the Grouping Service[Lüb10] of the Mobilis Service Environment in

2.3.1. The Grouping client provides methods to follow the protocol of the Grouping

Service in order to meet requirement FUNC-6. The following methods are incorpo-

rated in the Grouping client:

GroupQuery allows the client to perform a query request to discover groups that are

near the user’s location. Latitude and Longitude values of the user’s location

are passed as arguments. Result stanzas include a list of groups with respective

details.

GroupInfo augments the GroupQuery method by providing a query mechanism for

specific groups which are passed as an argument (Group-ID). GroupInfo re-

sponses include more fine-grained information, such as a list of members.

51

4. Conceptual Design

GroupMemberInfo is the method to set and get context information of users. It

allows the user to provide information about his or her own context and to

retrieve information of other users. Context information is passed as an array

argument with key/value pairs for each context item. The result type depends

on the type of request and is handled by the passed callback functions for each

type.

GroupCreate creates a new group on the server. All necessary information regarding

the new group is passed as an attribute array argument. The server sends the

Group-ID as a result. Updates to information about the group are also handled

by this method.

GroupDelete removes a group with the given Group-ID from the server. Successful

responses are of type result while error responses need to be handled also.

GroupInvite enables a user to put other users on an invite list for a specific group.

For closed groups, only users on the invite list are able to join the group.

Parameters are the Group-ID and the JIDs of an unbound number of invitees.

GroupJoin allows the user to join a group. Parameters include Group-ID and location

information of the user. The successful join is acknowledged with an empty

result response while several error responses are possible.

GroupLeave indicates the user’s wish to leave a specific group. The Group-ID is

passes as a required argument. In case the user was the only member, the

group is deleted from the server after the user has left.

Content

The Content client follows the protocol for the Repository Service and the Content

Service in the Mobilis Service Environment[Söl09]. It makes heavy use of the Si File

Transfer(XEP-0096) component implemented in the XMPP Web Client .

RepositoryQuery allows the client to issue a query to the repository in order to

browse enlisted content items. As a parameter, an array is passed that rep-

resents conditions to narrow the intended result set. The result response

contains a list with repository items that can be referenced through an Unique

Identification (UID).

RepositoryDelete causes the Repository Service to issue a delete request to the Con-

tent Service. The passed UID references the repository item.

ContentDownlod initiates the content transfer of the repository item defined by a

UID.

52

4.4. Summary

AddIncomingContentHandler allows the client to implement a handler routine for

incoming content. After the ContentDownload method, the Content Service

initiates an SI file transfer which has to be handled and responded to by the

client.

ContentUpload indicates the client’s wish to upload content that is referenced by a

UID.

AddUploadContentHandler adds a function as a handler for an incoming upload

request. Similar to ContentDownload, the actual file transfer is initiated by

the Content Service on the Mobilis Server .

Social Network Integration

Social network services, such as Foursquare, Gowalla and Qype provide APIs to serve

service specific data. For example, Foursquare provides information about venues

that users have created. Web applications can initiate requests for a list of venues

near a certain location and all necessary information is included in the response.

In order to ensure authorization of users most of these APIs use OAuth2. Social

Network Integration is independent from all other XMPP communication. Existing

JavaScript libraries to connect to service specific APIs are used. Therefore social

network integration is independent from all other XMPP communication as it can

be realized entirely on the client-side.

Plug-in Adapter

The service-based design of the Mobilis platform makes it easily extensible. To incor-

porate new services into Mobilis applications, the service providers have to specify

Mobilis Beans for their service. This way, the use of the service is independent from

the actual implementation. To accommodate that degree of extensibility, which is

formulated in NONF-1.1, the Mobilis Services Web Client includes a plug-in adapter.

All aforementioned service clients are actually implemented as plug-ins to the Mo-

bilis Core. Plug-ins are dynamically loaded by the core component. This design also

makes interchangeability of service client implementations possible (NONF-1.3).

4.4. Summary

In this chapter we addressed the functional and non-functional requirements of chap-

ter 3 and provided a conceptual design for a framework supporting web-based client

development for Mobilis applications. Table 4.2 lists all requirements and indicates

whether the proposed concept addressed the issue. All requirements prioritized as

high are met and considered in our design. Unfortunately FUNC-8 (low) could not be

53

4. Conceptual Design

ID Description Addressed

FUNC-1 Instant Messaging (user-to-user, client-to-server) X

FUNC-2 Publish Subscribe X

FUNC-3 Presence Management X

FUNC-4 Multi-User-Chat X

FUNC-5 User Context Management X

FUNC-6 Group Management X

FUNC-7 File/Media Sharing X

FUNC-8 Shared Editing �

FUNC-9 Service Discovery X

FUNC-10 Social Network Integration X

NONF-1 Generic Framework X

NONF-1.1 Extensibility X

NONF-1.2 Reusability X

NONF-1.3 Interchangeability X

NONF-2 A-Grade Browser Compatibility X

NONF-3 A-Grade Mobile Browser Compatibility X

NONF-4 Native Web Technologies (HTML, CSS, JavaScript) X

NONF-5 Real-Time Bidirectional Communication X

NONF-6 Security X

Table 4.2.: Requirements consideration

addressed properly, due to the complexity of the service specific protocol. However,

this service can be integrated into the framework via the plug-in adapter.

54

5. Implementation

In this chapter we introduce certain aspects and details of the implementation of

the concept presented in the previous chapter. First, we discuss the specifics of the

web client architecture. We then cover the implementation of the XMPP Web Client

including the BOSH client library. A presentation of the most important details of

the Mobilis Services Web Client implementations is next. We conclude this chapter

with a presentation of the extensibility features the framework provides.

5.1. Single Page Application

Before the discussion of implementations specific to each component, we need to

state some facts about the intended use of the framework. The design decision, to

built the system based on BOSH, shifts the entire client application logic into the

web browser. We state in Section 4.1.3, that it is conceivable to build a Mobilis web

client without an application server whatsoever. This is possible by implementing

the web clients as a Single-page Application (SPA). An SPA consists of static content,

such as HTML, CSS, images and JavaScript files, which comprise the user interface

in the form of a web page. For the entire application session the initial web page

is not reloaded or left. All dynamic content, such as collaborative messages, is

retrieved in the background using scripted HTTP and then injected into the run-

time representation of the web page, called DOM.

Our framework provides the XMPP Web Client for retrieving content in real-

time. SPAs take it a step further than familiar Ajax web applications that still

require the occasional page load in order to advance the interaction of the user with

the application. This architecture is especially useful for Mobilis web clients, since

the established BOSH connection lives only within the DOM of the web page. A

page reload results in aborting the BOSH connection. BOSH provides functionality

that allows passing of connection details, such as sid and rid, between DOMs which

would make a single connection over multiple page loads possible. However, for the

implementation of this framework we decided in favor of the SPA architecture. But

an extension to support page reload is certainly possible.

All functionality of our framework is provided by a single JavaScript file (mobilis.

js). Application specific logic is implemented in separate JavaScript code. To avoid

incompatibility issues between browser implementations, our framework is based on

55

5. Implementation

the de-facto standard JavaScript library for DOM manipulation and event handling,

called jQuery [The10]. The mobilis.js file includes all necessary libraries to run the

Mobilis web application, such as libraries associated with the XMPP Web Client and

the Mobilis Services Web Client . JavaScript engines immediately interpret code on

page load. We exploit this fact to make our libraries instantaneously available for

the web application. We facilitate so-called anonymous self-executing functions to

do so. Listing 5.1 shows such a function defining a constructor for a class called

Mobilis.

1 (function($){

2 if (typeof window.Mobilis == "undefined"){

3 var Mobilis = window.Mobilis = function(){

4 // constructor code here

5 }

6 window.Mobilis = new Mobilis();

7 }

8 })(jQuery);

Listing 5.1: Anonymous self-execution function in Javascript

Then a new object (Mobilis) in the window scope is created and added to the DOM.

This is common practice to overcome the design flaws of JavaScript in regard to

global variables and provides namespacing semantics. We define our own namespace

and the entire framework logic is encapsulated in the Mobilis object. The Mobilis

object implements a function called extend, which takes a namespace and an object

as arguments. It extends the Mobilis namespace with the logic encapsulated in

the passed object under Mobilis.{namespace}. Mobilis holds the entire functionality

provided by the framework, such as the BOSH connection management, the event

handling and client implementations for Mobilis Services. Mobilis exists in the

window object, so in case of a page reload or closing of the browser window the Mobilis

object does not exist anymore, therefore the design decision in favor of the SPA

architecture. Especially our long-lived BOSH connection with the Mobilis platform is

lost on page reload. Mobilis client web applications perform an initial HTTP request

for static content served by the web server. Further communication like exchanging

XMPP messages with the Mobilis platform is handled by the BOSH connection.

All content, the client application processes, is transfered over the BOSH-managed

connection. Many popular web applications follow the SPA architecture, particularly

the popular Google Maps1 web application.

1http://maps.google.com/

56

5.2. XMPP Web Client

5.2. XMPP Web Client

Section 4.3.2 states that the XMPP Web Client is supposed to implement the entire

BOSH connection handling. In order to provide this, we employ a JavaScript BOSH

client library instead of implementing XEP-0124 (Bidirectional-streams Over Syn-

chronous HTTP (BOSH)) and XEP-0206 (XMPP over BOSH) from scratch. The

following three JavaScript client libraries for BOSH are available.

� JSJaC - JavaScript Jabber/XMPP Client Library [Str08]

� xmpp4js [Ive08]

� Strophe.js [Mofb]

While JSJaC and xmpp4js are not actively maintained anymore and never really

reached sufficient maturity, we found in Strophe.js [Mofb] an excellent BOSH client

library. The authors paid special attention to error handling to mask connection

errors due to an unreliable network, such as wireless connections. The main class in

Strophe is Strophe.Connection. This class has methods for establishing the connec-

tion to the Connection Manager and for sending stanzas back and forth. The entire

library is 47KB and is included in mobilis.js.

The BOSH Connection Manager can either be a stand alone server or be a compo-

nent of an XMPP server. A separate Connection Manager server is able to establish

a connection with any XMPP server, allowing users registered with different XMPP

domains to use it. For development and testing we choose the second option. We use

the Connection Manager that is incorporated with Openfire2, the XMPP server that

is used for the Mobilis platform. Openfire names its Connection Manager HTTP

Binding and exposes it normally at TCP port 7070. Due to the same-origin policy

that JavaScript is subject to, the XMPP Web Client (retrieved from port 80) is

not allowed to connect to a resource on port 7070. There are numerous options to

work around this policy. We decided to reverse proxy the HTTP Binding address

through a URL on port 80, such as SERVERNAME:80/http-bind. In our set up we use

Apache HTTP Server for handling static content and the module proxy_http_module

to handle the reverse proxy. Listing 5.2 shows the configuration of an Apache

HTTP Server. The XMPP Web Client needs the URL as a configuration parameter.

Since all other parameters can be found in Mobilis.core we store the URL under

Mobilis.core.HTTPBIND

Additionally, the XMPP Web Client is supposed to hold implementations of the

four mentioned XEPs. Strophe.js provides an excellent plug-in interface. Imple-

mentations for various XEPs are available as Strophe.js community plug-ins [Mofa].

2http://www.igniterealtime.org/projects/openfire/

57

5. Implementation

ProxyRequests Off

ProxyPass /http-bind http://{XMPPSERVER}:7070/http-bind/

ProxyPassReverse /http-bind http://{XMPPSERVER}:7070/http-bind/

Listing 5.2: Reverse proxy Openfire HTTP Binding

We incorporate libraries for XEP-0030 (Service Discovery), XEP-0045 (Multi User

Chat) and XEP-0060 (Publish Subscribe) into mobilis.js

The BOSH JavaScript client and XEPs implementations are used by the XMPP

Web Client to provide an API for asynchronous communication with XMPP.

5.3. Mobilis Services Web Client

The aforementioned object Mobilis only provides the backbone for our framework.

Actual application logic is added via the extend function. Mobilis Core is imple-

mented in Mobilis.core and discussed in detail in the following section.

5.3.1. Configuration

In order to make use of the framework, we need to configure Mobilis for each Mobilis

application. Three parameters are required to connect a web client to the Mobilis

platform:

� Mobilis.core.HTTPBIND specifies the URL of the Connection Manager.

� Mobilis.core.NS is an object that hold all namespaces for Mobilis Services.

This information needs to be provided prior to execution.

� Mobilis.core.SERVICES lists all available Mobilis Services identified by its names-

pace and provides the version and JID. Except for the Coordinator Service, the

data captured here is retrieved by a service discovery after the initial connect.

In order to perform the discovery request, the JID and version of the Coordi-

nator Service need to be defined prior to execution.

The framework supports three ways for web client developers to set these pa-

rameters. The first way is illustrated in Listing 5.3. All parameter are set in the

Mobilis.core object source code. This option limits all users of this web client to

one specific Mobilis Server and allows just one Connection Manager. The second

option uses HTML5 localStorage. The user is required to set these parameters when

using the web client for the first time. Parameter values are then stored in the local

storage of the web browser and can be retrieved each time the user opens the web

58

5.3. Mobilis Services Web Client

1 HTTPBIND: ’/http-bind’,

2 NS: {

3 COORDINATOR: ’http://mobilis.inf.tu-dresden.de#services/CoordinatorService’,

4 USERCONTEXT: ’http://mobilis.inf.tu-dresden.de#services/UserContextService’,

5 GROUPING: ’http://mobilis.inf.tu-dresden.de#services/GroupingService’,

6 },

7 SERVICES: {

8 ’http://mobilis.inf.tu-dresden.de#services/CoordinatorService’: {

9 version: ’1.0’,

10 jid: ’mobilis@mobilis.inf.tu-dresden.de/Coordinator’

11 },

12 }

Listing 5.3: Configuration of the Mobilis Client Library

application. For this option the web browser must support localStorage which the

newest versions of all major browsers do. The third way requires the user to specify

the values for these parameters everytime the web application is opened. This way

provides independence from a specific Mobilis Server , but comes with a decrease of

user experience.

Mobilis.core.NS is actually an array that holds key/value pairs of the following

form {JavaScript namespace}:{XMPP namespace} for each Mobilis service. The

Mobilis Service Environment allows services to be distributed on different physical

machines. The JID (found in Mobilis.core.SERVICES.{XMPP namespace}.jid) is the

defining parameter to be able to address each service. Also, for each service we

need the namespace to be able to interpret the payloads of the exchanged stanzas.

The values for JIDs and namespace are set by the service discovery operation that is

performed after the BOSH connection is established. Once these values are set, the

web client is able to use all collaboration services of the Mobilis platform.

Mobilis.core

In this section, we provide a showcase of implementation details for three very com-

mon operations Mobilis client applications perform. Besides the actual code, we

give examples of how to implement these functions into a client web application.

Mobilis.core.connect is the single most essential method provided by the frame-

work. In order to exchange collaborative messages with the Mobilis Service Environ-

ment every user has to connect to the XMPP network. connect uses the Mobilis.core.

HTTPBIND parameter and connects the user (JID and password) with the XMPP server.

Mobilis.core.connect takes, in addition to the JID and password, a callback func-

tion as the third parameter. The connection process goes through different stages,

59

5. Implementation

such as connecting, authenticating, connected, disconnecting, etc. The callback gets

called for each state change. Listing 5.4 shows a typical call of Mobilis.core.connect.

1 Mobilis.core.connect(

2 ’user1@mobilis.inf.tu-dresden.de’,

3 ’mobilis’,

4 function (status) {

5 if (status == Mobilis.core.Status.ERROR) {

6 } else if (status == Mobilis.core.Status.CONNECTING) {

7 } else if (status == Mobilis.core.Status.AUTHENTICATING) {

8 } else if (status == Mobilis.core.Status.CONNECTED) {

9 // send presence, update user inteface,

10 }

11);

Listing 5.4: Example call of Mobilis.core.connect

Mobilis.core.mobilisServiceDiscovery In Section 4.3.1 we stated that there are two

main types of interaction with the framework. mobilisServiceDiscovery represents

the first type that sends a stanza that incorporates the passed arguments and regis-

ters callbacks for the response. Listing 5.5 illustrates the call of the service discovery

method for a specific service and version. [Mobilis.core.NS.USERCONTEXT, "1.0"] are

attributes to create an appropriate request stanza for the User Context Service

version 1.0. Two functions taking the response <iq/> as the argument for further

processing are defined. The passed object represents the received stanza as an XML

DOM element and is easily processable via standard jQuery functions.

1 Mobilis.core.mobilisServiceDiscovery(

2 [Mobilis.core.NS.USERCONTEXT, ’1.0’],

3 function(resultIQ){

4 // result handler

5 },

6 function(errorIQ){

7 // error handler

8 }

9);

Listing 5.5: Example call of Mobilis.core.mobilisServiceDiscovery

In order to provide more detailed insight into the implementation, Listing 5.6

illustrates the Mobilis.core.mobilisServiceDiscovery method. In line 4 we use the

$iq function to create a Strophe.Builder for convenient XML handling. Lines 11 to

15 extend the stanza with passed arguments. The stanza is sent in line 17 with

two callback functions that process the resultIQ and errorIQ respectively. The first

function (line 19) finds all mobilisService elements and sets Mobilis.core.SERVICES

accordingly. This routine is performed to configure the Mobilis Services Web Client

during runtime as soon as a connection to an XMPP server has been established.

60

5.3. Mobilis Services Web Client

1 mobilisServiceDiscovery: function(attr, resultcallback, errorcallback) {

2 if (!resultcallback) {resultcallback = Mobilis.core.defaultcallback;};

3 if (!errorcallback) {errorcallback = Mobilis.core.defaulterrorback;};

4 var discoiq = $iq({

5 to: Mobilis.core.SERVICES[Mobilis.core.NS.COORDINATOR].jid,

6 type: "get"

7 })

8 .c("serviceDiscovery", {

9 xmlns: Mobilis.core.NS.COORDINATOR

10 });

11 if (attr[0] && attr[0] !== null) {

12 discoiq.c(’serviceNamespace’).t(attr[0]);

13 };

14 if (attr[1] && attr[1] !== null) {

15 discoiq.up().c(’serviceVersion’).t(attr[1]);

16 };

17 Mobilis.core.sendIQ(

18 discoiq,

19 function(resultiq) {

20 $(resultiq).find("mobilisService").each(function() {

21 Mobilis.core.SERVICES[$(this).attr(’namespace’)] =

22 {

23 ’version’: $(this).attr(’version’),

24 ’jid’: $(this).attr(’jid’)

25 };

26 });

27 },

28 function(erroriq) {}

29);

30 };

Listing 5.6: Implementation of Mobilis.core.mobilisServiceDiscovery

Mobilis.core.addHandler provides functionality to add a handler to be invoked in

case incoming stanzas match certain attributes. This method represents the second

type of interaction within the framework, registering a general handler. Listing 5.7

shows how to add a handler for the incoming <iq/> with the namespace http://

mobilis.inf.tu-dresden.de#services/GroupingService and of type result.

1 Mobilis.core.addHandler(

2 function (stanza){

3 // handler logic

4 },

5 Mobilis.core.NS.GROUPING,

6 ’iq’,’result’

7);

Listing 5.7: Example call of Mobilis.core.addHandler

61

5. Implementation

Available Plugins

Table 5.1 lists all available components in the mobilis.js library.

Plug-in Description

Mobilis.core Connect/Disconnect, Send stanzas, Service Discovery

Mobilis.context Publish/Subscribe of context information

Mobilis.grouping Client for the Mobilis Grouping Service

Mobilis.content Client for the Mobilis Repository Service

Mobilis.snintegration Social Network Integration

Table 5.1.: Available Plug-ins for Mobilis Services Web Client

5.4. Extensibility

Extensibility and reusability are non-functional requirements with high priority in

order to accommodate the service oriented nature of the Mobilis platform. The

Mobilis Service Environment allows introduction of both, new Generic Mobilis Ser-

vices and App-specific Services. Web clients for Mobilis applications need APIs to

communicate with new services. The proposed web gateway framework provides a

plug-in adapter to extend the functionality. In this section we introduce the adapter

in detail and present examples of usage.

New services appended to the Mobilis Service Environment implicate new proto-

cols and stanza structures. Web client developers are not supposed to handle the

creation of stanzas or details of message transfer. Therefore, we need to be able to

extend the framework to provide a comfortable abstraction of XMPP communica-

tion for the Mobilis application logic. Plug-ins are the way to do this. Listing 5.8

illustrates the skeletal structure of a plug-in.

1 (function(){

2 var core = {

3 // application logic here

4 };

5 Mobilis.extend("core", core);

6 })();

Listing 5.8: Plug-in skeleton

In a plug-in, we can encapsulate the protocol dictated by a new Mobilis service.

Customized stanzas are created here. In order to exchange the stanzas Mobilis.core

provides send and sendIQ.

All available plug-ins are implemented in separate JavaScript files. We supply a

makefile in addition to the source code that generates the mobilis.js that is employed

62

5.5. Summary

in the HTML of the web page. The script produces mobilis.js and mobilis.min.js

which is a minified and compressed version of the source code to reduce the file

size for more efficient page load. With this process, developers can choose which

plug-ins they need and want to include in web client. All libraries included in

mobilis.js are pure JavaScript. The overwhelming majority of modern websites use

JavaScript, and all modern web browsers on desktops, game consoles, tablets and

smartphones include JavaScript interpreters, making JavaScript the most ubiquitous

programming language in history.

5.5. Summary

In this chapter we provided insights into the implementation of the framework.

We presented the architecture of Mobilis web clients and covered the XMPP Web

Client implementation. For the Mobilis Services Web Client we showcased three

commonly used methods and the respective usage. We wrapped this chapter up with

a description of extensibility features of our framework. In Chapter 4 we mentioned

components representing client implementations for Mobilis Services. Table 5.2

illustrates which plug-ins were implemented to their full extent in the course of this

work.

Plug-in Implemented

Mobilis.core X

Mobilis.context X

Mobilis.grouping X

Mobilis.xhunt (Chapter 6) X

Mobilis.content �

Mobilis.snintegration �

Table 5.2.: Fully implemented plug-ins

Unfortunately Mobilis.content is not fully implemented yet. Realizing this com-

ponent, though, will not differ from other plug-in implementations. The same line

of action with respect to stanza creation and handler registration can be taken.

Mobilis.snintegration was originally considered (conceptual design) to be an indi-

vidual component in the Mobilis Services Web Client . However, during implementa-

tion it became clear that social network integration is part of the Mobilis application

specific logic. No encapsulation is necessary, nor would it be advantageous. Existing

frameworks to connect to various APIs available in JavaScript are to be employed.

63

5. Implementation

64

6. Evaluation

In this chapter we evaluate the concept and implementation presented in this work.

We start with a presentation of QUnit Test results to show the browser compatibility

of our framework. In order to demonstrate the functionality, we use it in a real-

world use case. We developed web clients based on our framework for two Mobilis

applications. First, we present a spectator web application for MobilisXHunt. The

second web client is optimized for mobile web browsers with a touch-based interface.

The web application facilitates a client for MobilisGroups. After a brief performance

evaluation, the last section includes an error handling evaluation of our framework

with special attention to connection and therefore communication errors.

6.1. Browser Support

We introduced this work with an illustration of the present situation of mobile so-

cial application development. Platform fragmentation and the consequential bad

ratio between development cost and reach, make native application development

not thrifty. Web-based mobile application development is considered a serious alter-

native with many benefits, such as platform independent development and enormous

reach. The proposed framework lets application developers of mobile social software

enjoy these two amenities of web-based development. While the following sections

evaluate the functionalities of the framework, we present in this section platform

independence.

NONF-2 and NONF-3 require A-grade compatibility for both major desktop and

mobile browsers. In order to evaluate the compatibility of our framework, we provide

a test application that incorporates all distinct types of operation. We built the

application on the jQuery QUnit test suite.

Figure 6.1 illustrates the test application which tested the entire connection cycle

to an XMPP network and performs a service discovery request to the Mobilis Server .

In the course of the evaluation we performed this QUnit for all major desktop and

mobile browsers. Appendix A provides a comprehensive list of test results while

Table 6.1 summarizes the results. Our framework features complete browser and

platform independence and facilitates an excellent basis for real-time collaboration

client applications. Safari iOS support is particularly valuable unlocking the iPhone

and iPad for Mobilis client applications.

65

6. Evaluation

Figure 6.1.: QUnit Test: Firefox 5, Mac OS X 10.6

We now move on to evaluate the real-time capabilities and generic nature of the

framework by developing two collaborative web applications.

6.2. MobilisXHunt Spectator Web Application

MobilisXHunt is the first Mobilis application that we want to augment with a web

based client application. Kiefner introduces this location-based game in [Kie11].

MobilisXHunt implements the famous board game Scotland Yard [Rav] as a real-

world game in which the players use mobile devices to participate in this turn-based

game. The main goal is to hunt the villain (Mister X) as a team by moving along pre-

determined paths (bus, train, taxi) until at least one player is in the same location

as the villain, whose route is normally kept secret.

Kiefner presents the App-specific Service and an Android-based client applica-

tion for MobilisXHunt. We use our framework to develop a web-based spectator

application to monitor the game action. As one of the applications based on the

Mobilis platform, communication in MobilisXHunt is realized via XMPP messages.

Therefore, location updates, group chat data and other game related information is

transported in stanzas. Distribution of information is subject to limitations based

on the roles of users. For example, Mister X is able to see the location of all partic-

ipants and their movement, but keeps his own location secret. In order to provide

66

6.2. MobilisXHunt Spectator Web Application

Browser A-grade Support

Chrome X

Firefox X

Safari X

Internet Explorer X

Opera X

Safari Mobile (iPhone) X

Safari Mobile (iPad) X

Blackberry Playbook X

Opera Mini X

HP WebOS X

Android Phone X

Android Tablet X

Table 6.1.: Browser Support

complete monitoring functionality the MobilisXHunt Service provides a spectator

user role. All game related information is forwarded to spectators. The web client

presented in this section provides a user interface for monitoring the game action.

The main goal of the web client is to place the participants on the map in real-time,

display the multi-user chat and provide basic information about the running game.

MobilisXHunt employs the App-specific Service MobilisXHunt Service [Kie11]

which implements an application specific protocol. Custom stanzas are exchanged

to initiate a game, broadcast turn-based actions of participants and control the game

flow. The spectator web application must be able to understand and process these

customized stanzas. In the following section we describe the MobilisXHunt web

client plug-in and its features. By extending Mobilis with the functionality provided

by Mobilis.xhunt we demonstrate the extensibility features of our framework.

6.2.1. Mobilis.xhunt

Listing 6.1 illustrates a small snippet of the MobilisXHunt plug-in. We demonstrate

two functions.

1 (function () {

2 var xhunt = {

3 //...

4 joinGame: function (attr, resultcallback, errcallback, timeoutcallback) {

5 //..

6 Mobilis.connection.sendIQ(stanza, callback, errback);

7 },

8 addRoundStatsHandler: function (callback) {

67

6. Evaluation

9 //..

10 Mobilis.connection.addHandler(handler, ’mobilisxhunt:iq:roundstatus’, ’

iq’, ’set’)

11 },

12 };

13 Mobilis.extend("xhunt", xhunt);

14 })();

Listing 6.1: Mobilis.xhunt

� joinGame creates a customized stanza following the protocol as described in

[Kie11], sends it and registers various handlers. This reoccurring procedure of

interacting with the framework is familiar and described in Chapter 5

� addRoundStatsHandler is an addHandler function for incoming RoundStatsIQ

stanzas [Kie11]. RoundStatsIQ are broadcasted to all participants in order to

inform about the last turn’s actions.

Mobilis.xhunt uses Mobilis.core functionality and provides a simple API to devel-

opers implementing the MobilisXHunt spectator web application. For completion,

Table 6.2 lists all necessary methods of Mobilis.xhunt in order to send outgoing and

handle incoming XMPP messages.

Function Parameter & Description

JoinGame User joins as spectators

GameDetails Information about the running game

UsedTickets Status of ticket quota

Snapshot Information update on game status

PlayerExit Spectator exit the game

AddLocationHandler Location update requests from the server

AddPlayersHandler Updates to status of players

AddPlayerExitGameHandler Players leaving games

AddStartRoundHandler The ”start round” broadcast

AddRoundStatsHandler Round stats broadcast

Table 6.2.: Available methods of Mobilis.xhunt

6.2.2. xhunt.js

The JavaScript file xhunt.js implements the application logic for the MobilisXHunt

web client, including the UI. Processing incoming data from the game and displaying

it is also part of xhunt.js. We use jQuery for DOM injection and user event handling.

68

6.2. MobilisXHunt Spectator Web Application

Additionally, we use the Google Maps API to include maps and display location-

based information, such as the position of all players. Gmap 3 [Dem11] is a great

jQuery plug-in that augments Google Maps with advanced features. We use it to

manipulate the maps.

Figure 6.2 shows a screen shot of the MobilisXHunt spectator web application.

In the main area we find maps provided by Google Maps and an XML data set as

an overlay indicating the pre-determined routes. The right hand site is split into

halves. The upper half shows a list of all participants and respective information,

while the lower half incorporates a groupchat window for ingame chat.

Figure 6.2.: Screenshot MobilisXHunt spectator web application

6.2.3. Summary

The implementation of the MobilisXHunt spectator web application proves the ex-

tensibility of the framework. We introduced a new App-specific Service and provided

a web client component that was integrated into the framework easily. Clearly de-

fined interfaces are used to interact with core functionality. Real-time game related

data is displayed with low latency, while the entire web application is browser-based

69

6. Evaluation

and uses nothing but native web technologies. The display and interaction possibil-

ities of a desktop browser are exploited to provide a rich UI for monitoring the game

action.

6.3. MobilisGroups Mobile Web client

The second web client we built on our framework is a MobilisGroups client. Mobil-

isGroups makes use of the Grouping Service in the Mobilis Service Environment to

provide location- and time-based grouping functionality. Users are able to create,

browse and join groups. Multi-user chat is supported between users of the same

group and enables, together with information about group membership of friends,

social networking capabilities. The service considers two pieces of user context in-

formation to determine access privileges, location and time. In order to exploit the

full potential of location data, mobile devices must be used. We decided therefore

to develop a mobile web client for MobilisGroups to demonstrate that the proposed

framework opens up the Mobilis platform for many more mobile operating systems

via web-based client applications. A MobilisGroups web client that provides real-

time social networking functionality proves that the web stack is an appropriate

technology for platform independent client development for the Mobilis platform.

Mobile browsers differ from desktop browsers in two characteristics:

1. screen size

2. interaction mechanism

To accommodate these differences, the user interface of a mobile web application

has to be significantly different compared to a regular web application. Three ma-

jor frameworks are available to develop a touch based UI that is optimized for small

screens. JQ Touch and jQuery Mobile are very capable JavaScript libraries with spe-

cial attention to browser compatibility. However jQuery Mobile has not yet reached

sufficient maturity and JQ Touch is no longer actively maintained. Therefore, we

decided to use Sencha Touch to develop a MobilisGroups web client that is optimized

for mobile browsers. Sencha Touch provides a comprehensive framework for high

performance web applications and follows the concept of starting with an empty

HTML <body/> and injecting every UI component dynamically via JavaScript.

Collaborative messages are exchanged with the Mobilis Grouping Service using

Mobilis.grouping. No App-specific Service is used for MobilisGroups. Including

mobilis.js in the HTML source is sufficient to develop the web client. The deploy-

ment of the framework with no customizations (just configuration) shows the generic

nature and reusability of the design.

Figure 6.3 shows two screenshots of the MobilisGroups web client. We find the

navigation bar at the bottom of the screen. Besides the map view that places all

70

6.4. Performance

Figure 6.3.: Screenshot MobilisGroups web client

available groups on the map, the interface provides views for friends and groups

connected to the user. Settings are available in the last view.

6.4. Performance

In order to evaluate the performance of the framework, we have to consider the

architecture of the underlying communication system. We use a BOSH managed

connection to exchange collaboration messages with the Mobilis platform. The

Connection Manager acts as a proxy for the web client towards the XMPP network.

Communication, hence performance characteristics, past the Connection Manager is

entirely XMPP based and independent from our framework. Latency up to this point

is responsibility of XMPP. Our architecture adds minimal latency to native XMPP

messages. The Connection Manager always holds open one HTTP request of the web

client and answers it with incoming stanzas. Added latency is of dimensions similar

to an HTTP round trip. Figure 6.4 illustrates the performance characteristics of the

test application. The entire life cycle of a BOSH managed connection plus a ser-

vice discovery request took 985 milliseconds. Performing the service discovery took

about 55 milliseconds, including building the stanza, exchanging it and displaying

71

6. Evaluation

Figure 6.4.: Performance evaluation

the result. Appendix B includes more detailed screenshots of the performance test

illustrating the individual HTTP roundtrips and their payload.

It is safe to say that BOSH does not add noticeable latency compared to native

XMPP communication. Therefore the user experiences the same real-time interaction

as with client applications directly connected via TCP.

6.5. Error Handling

In this Section we evaluate the tolerance of the frameworks to connection errors.

XMPP usually runs on a TCP connection which is reliable in nature. However in

networks with intermittent connectivity, such as mobile internet, the TCP connection

can get interrupted. This forces the client to re-establish the XMPP connection,

which includes multiple round trips for encryption, authentication, resource binding,

etc.

XMPP over BOSH provides a viable solution for this category of problems. The

tunneling of XMPP message exchanges through multiple HTTP request/response

cycles masks connection errors of the underlying network within the framework of

certain timeouts. The Connection Manager holds any HTTP request for 60 seconds

unless some data arrives from the XMPP network to be forwarded to the client. All

connection errors that are resolved within this timeout are no harm to the BOSH-

managed connection whatsoever. Another advantage of BOSH-managed connections

is the Connection Manager’s ability to cache and resend HTTP responses in case they

fail to reach the client. Therefore, data is never lost even on unreliable networks.

Regular long-lived TCP connections need frequent keepalive packets. Holding this

connection open consumes power, which is unfortunate for mobile devices. With

BOSH, no energy is consumed by long-polled HTTP requests.

6.6. Summary

This chapter presented an evaluation of the proposed framework. We showcased

web clients for two different Mobilis applications, MobilisXHunt and MobilisGroups.

72

6.6. Summary

Both web clients are based on the framework designed in this work. They follow

the architecture described in Section 5.1, while all dynamic content originating in

the XMPP-base Mobilis Service Environment is provided by our framework. The

two web clients differ in just the user interface and application specific logic, such

as interaction event handling and displaying collaborative data. Additionally, we

provided an evaluation of browser support, performance characteristics and con-

nection error handling. In all categories the proposed framework excels. With this

evaluation we proved the generic nature and real-time capabilities of our framework.

73

6. Evaluation

74

7. Conclusion

This chapter sums up results of this work and provides an outlook.

7.1. Summary

In the beginning of this thesis, we stated that the web technology stack is a vi-

able option to develop platform independent applications. We especially discussed

mobile social software and identified real-time communication capabilities as a chal-

lenge in web application development. We claimed to provide a framework for web

application development that facilitates bi-directional exchange of collaborative mes-

sages with the Mobilis platform in real-time. In order to provide the fundamental

knowledge necessary to comprehend the conceptual design of the framework, we in-

troduced the eXtensible Messaging and Presence Protocol and various real-time web

technologies. These technologies composed the basis of discussion for the design de-

cisions in this work. After a brief introduction of the Mobilis platform, we examined

the state-of-the-art in research and industry. A comprehensive requirements analysis

proceeded the main part of this work, the conceptual design. Before presenting the

architecture of the framework, we conducted an assessment of real-time web tech-

nologies with regard to our requirements and concluded that Bidirectional-streams

Over Synchronous HTTP is the right technology for our framework. With the use

of XEP-0206 (XMPP over BOSH), we connected the browser to the XMPP-based

Mobilis platform. This enabled an event-driven web client architecture to produce

outgoing and handle incoming collaborative XMPP messages. We presented the

XMPP Web Client as the component responsible for real-time communication and

stanza handling and the Mobilis Services Web Client that implements protocols

specific to Mobilis Services. For implementation details, we provided code snippets

that illustrate the even-driven nature of the framework. Additionally the extensible

character of the plug-in-based design was discussed. In order to evaluate the concept

we implemented web clients for MobilisXHunt and MobilisGroups respectively. We

also performed browser compatibility and performance tests.

75

7. Conclusion

7.2. Outlook

Mobile web application development has a promising future. Like every aspect of

mobile computing, the capabilities of the mobile web browser is improving rapidly.

Brilliant innovation in the introduction of HTML5, such as canvas, webGL, gener-

ational garbage collection in JavaScript or Webworkers and WebSockets, make the

web stack a powerful and high-performance application platform.

Business logic is traditionally located on back-end application servers and Ajax

enables highly interactive user interfaces to disguise the fact that the browser is just

a thin client rendering the web page. In the near future however, web browsers are

going to be powerful enough to serve as a runtime for extensive applications and

business logic while the back-end servers will just provid the data.

Chromium OS1 is a first attempt in this direction and demonstrates the capabili-

ties of the V8 JavaScript engine. For the mobile world this trend grows even faster.

HP2 and RIM base their entire native application concept on the web stack and let

web applications break out of the web browser sandbox. Native webOS and Black-

berry OS applications are in-fact web applications. PhoneGab3 and Appcelerator

Titanium4 provide that same concept of breaking out of browser constraints for all

mobile platforms. Applications are developed using web technologies and wrapped

in a native application shell exposing device and OS specific functionalities. Al-

though the industry has to figure out a viable deployment model for these kinds of

web applications to address the obvious security issues (File system access, etc.),

there is clearly a noticeable trend towards web application development.

For the Mobilis Project , web application development is a great way to extend the

reach to customers and overcome platform and device fragmentation. The design

decision to use BOSH for bridging XMPP and the web is the smartest for the time

being. With the evolution of WebSockets and better browsers support, however,

future systems should incorporate newer web technologies. Scalable event-driven

systems solely based on JavaScript (both client- and server-side) and XMPP over

WebSockets is possible. For example, node.js5 as a server-side JavaScript platform

receives immense attention in the web engineering community. Projects such as

SocketStream6 emerge rapidly. With these technologies the web is becoming a true

real-time platform.

1http://www.chromium.org/
2http://www.hp.com
3http://www.phonegap.com/
4http://www.appcelerator.com
5http://nodejs.org/
6https://github.com/socketstream/socketstream

76

7.2. Outlook

As of now, the web stack might not be able to compete in some categories with

native applications, such as 3D graphics and video games. However, for most use

cases, web application development is a serious alternative to native applications.

77

7. Conclusion

78

Bibliography

[BCD+09] Nilanjan Banerjee, Dipanjan Chakraborty, Koustuv Dasgupta, Sumit

Mittal, Seema Nagar, and Saguna. R-U-in? - Exploiting Rich Pres-

ence and Converged Communications for Next-Generation Activity-

Oriented Social Networking. In Proceedings of the 2009 Tenth Interna-

tional Conference on Mobile Data Management: Systems, Services and

Middleware, MDM ’09, pages 222–231, Washington, DC, USA, 2009.

IEEE Computer Society.

[BHT97] Richard Bentley, Thilo Horstmann, and Jonathan Trevor. The World

Wide Web as Enabling Technology for CSCW: The Case of BSCW.

Comput. Supported Coop. Work, 6:111–134, May 1997.

[BLH01] Dominik Buszko, Wei-Hsing (Dan) Lee, and Abdelsalam (Sumi) Helal.

Decentralized ad-hoc groupware API and framework for mobile collab-

oration. In Proceedings of the 2001 International ACM SIGGROUP

Conference on Supporting Group Work, GROUP ’01, pages 5–14, New

York, NY, USA, 2001. ACM.

[com11] comScore. The 2010 mobile year in review. Press Release, February

2011.

[Dem11] Jean-Baptiste Demonte. Gmap3, 2011. http://gmap3.net/.

[DGI11] Rabih Dagher, Cristian Gadea, and Tropper Dan R. Ionescu, Bog-

danand Ionescu. Collaborative Web-Based Mapping of Real-Time

Flight Simulator and Sensor Data. OSGeo Journal, Volume 8:48–52,

2011.

[DR08] T. Dierks and E. Rescorla. The Transport Layer Security (TLS) Proto-

col Version 1.2. RFC 5246 (Proposed Standard), August 2008. Updated

by RFCs 5746, 5878, 6176.

[Dra11] LLC Drakontas. Smyle, 2011. http://smylenow.com/.

[DRS00] M. Day, J. Rosenberg, and H. Sugano. A Model for Presence and

Instant Messaging. RFC 2778 (Informational), February 2000.

79

http://gmap3.net/
http://smylenow.com/

Bibliography

[EHM+07] R. Eatmon, J. Hildebrand, J. Miller, T. Muldowney, and P. Saint-

Andre. XEP-0004: Data forms. Technical report, XMPP Standards

Foundation, 2007.

[FGM+99] R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter, P. Leach,

and T. Berners-Lee. Hypertext Transfer Protocol – HTTP/1.1. RFC

2616 (Draft Standard), June 1999. Updated by RFCs 2817, 5785, 6266.

[FZ98] Michael Franklin and Stan Zdonik. Data in your face: Push Technology

in Perspective. SIGMOD Rec., 27:516–519, June 1998.

[GLG11] Carl A. Gutwin, Michael Lippold, and T. C. Nicholas Graham. Real-

time Groupware in the Browser: Testing the Performance of Web-

based Networking. In Proceedings of the ACM 2011 conference on

Computer supported cooperative work, CSCW ’11, pages 167–176, New

York, NY, USA, 2011. ACM.

[GNS+11] L. Gutierrez, I. Nikolaidis, E. Stroulia, S. Gouglas, G. Rockwell, and

M. Boechler, P. andCarbonaro. fAR-PLAY: A framework to develop

augmented/alternate reality games. In Pervasive Computing and Com-

munications Workshops (PERCOM Workshops), 2011 IEEE Interna-

tional Confere, 2011.

[Goo09] Google. Google Wave, 2009. http://wave.google.com.

[Goo11a] Google. Google Docs, 2011. http://docs.google.com.

[Goo11b] Google. Google Plus, 2011. http://plus.google.com.

[Gro11] Vodafone Group. Onesocialweb, 2011. http://onesocialweb.org/.

[Her09] D. Hering. Entwicklung eines Dienstes für Real-time Collaborative

Editing für die Mobilis-Plattform. Master’s thesis, Technische Univer-

sität Dresden, Fakultät Informatik, September 2009.

[Hic09] I Hickson. The Web Socket protocol. IETF, Standards Track, April

2009.

[Hic10] I Hickson. The Websocket API. W3C, Editor’s Draft, 2010.

[Hic11] Ian Hickson. HTML5 A vocabulary and assciated APIs for HTML and

XHTML. W3C Working Draft, May 2011. http://www.w3.org/TR/

html5/.

80

http://wave.google.com
http://docs.google.com
http://plus.google.com
http://onesocialweb.org/
http://www.w3.org/TR/html5/
http://www.w3.org/TR/html5/

Bibliography

[HJ99] Manfred Hauswirth and Mehdi Jazayeri. A component and communi-

cation model for push systems. SIGSOFT Softw. Eng. Notes, 24:20–38,

October 1999.

[HMESA08] J. Hildebrand, P. Millard, R. Eatmon, and P. Saint-Andre. XEP-0030:

Service discovery. Technical report, XMPP Standards Foundation,

2008.

[Inc11] Convore Inc. Convore, 2011. https://convore.com/.

[Ive08] Harlan Iverson. xmpp4js, 2008. http://xmpp4js.sourceforge.net/.

[Kie11] Danny Kiefner. Runden-basierte Orts-bezogene Spiele auf mobilen

Endgeräten. Master’s thesis, Technische Universität Dresden, Fakultät

Informatik, April 2011.

[Lüb10] Robert Lübke. Mobile Social Networking - Location Based Group For-

mation. Master’s thesis, Technische Universität Dresden, Fakultät In-

formatik, Oktober 2010.

[Lüb11] Robert Lübke. Ein framework zur entwicklung mobiler social software

auf basis von android. Thesis, March 2011.

[LSS11] Robert Lübke, Daniel Schuster, and Alexander Schill. Mobilisgroups:

Location-based group formation in Mobile Social Networks. In PerCom

Workshops, pages 502–507, 2011.

[LT09] Soren Lassen and Sam Thorogood. Google Wave Federation

Architecture. Google, Inc., 2009. http://wave-protocol.

googlecode.com/hg/whitepapers/google-wave-architecture/

google-wave-architecture.html.

[Ltd09] Storm Ideas Ltd. Collab, 2009. http://colaab.com/.

[Mofa] J. Moffitt. Strophe community plug-ins. https://github.com/

metajack/strophejs-plugins.git.

[Mofb] Jack Moffitt. Strophe.JS. http://code.stanziq.com/strophe.

[Mof10] J. Moffit. An XMPP Sub-protocol for WebSocket. Technical report,

Internet Engineering Task Force, 2010.

[MW10] Stephen Mogan and Weigang Wang. The Impact of Web 2.0 Devel-

opments on Real-Time Groupware. In Proceedings of the 2010 IEEE

Second International Conference on Social Computing, SOCIALCOM

’10, pages 534–539, Washington, DC, USA, 2010. IEEE Computer So-

ciety.

81

https://convore.com/
http://xmpp4js.sourceforge.net/
http://wave-protocol.googlecode.com/hg/whitepapers/google-wave-architecture/google-wave-architecture.html
http://wave-protocol.googlecode.com/hg/whitepapers/google-wave-architecture/google-wave-architecture.html
http://wave-protocol.googlecode.com/hg/whitepapers/google-wave-architecture/google-wave-architecture.html
http://colaab.com/
https://github.com/metajack/strophejs-plugins.git
https://github.com/metajack/strophejs-plugins.git
http://code.stanziq.com/strophe

Bibliography

[MZ06] A. Melnikov and K. Zeilenga. Simple Authentication and Security

Layer (SASL). RFC 4422 (Proposed Standard), June 2006.

[Ora10] Oracle. Oracle Webcenter Real-time Collaboration, 2010. http://www.

oracle.com/technetwork/middleware/wc-real-time-collaboration/

overview/webcenter-real-time-collaboration-165168.pdf.

[PG11] Christy Pettey and Laurence Goasduff. Gartner identifies 10 consumer

mobile applications to watch in 2012. Press Release, 2011. http:

//www.gartner.com/it/page.jsp?id=1544815.

[Poh09] Mikko Pohja. Server Push with Instant Messaging. In Proceedings

of the 2009 ACM symposium on Applied Computing, SAC ’09, pages

653–658, New York, NY, USA, 2009. ACM.

[PSA10] Ian Paterson and Peter Saint-Andre. XEP-0206: XMPP over BOSH.

Technical report, XMPP Standards Foundation, 2010.

[PSSAM10] Ian Paterson, Dave Smith, Peter Saint-Andre, and Jack Moffitt. XEP-

0124: Bidirectional-streams Over Synchronous HTTP (BOSH). Tech-

nical report, XMPP Standards Foundation, 2010.

[Rav] Ravensburger. Scotland Yard. http://www.ravensburger.com/usa/

products/games/family_games/scotland_yard_26117/index.html.

[RCBH10] Mattias Rost, Henriette Cramer, Nicolas Belloni, and Lars Erik

Holmquist. Geolocation in the Mobile Web Browser. In Proceedings of

the 12th ACM international conference adjunct papers on Ubiquitous

computing, Ubicomp ’10, pages 423–424, New York, NY, USA, 2010.

ACM.

[RG96] Mark Roseman and Saul Greenberg. Building real-time groupware with

groupkit, a groupware toolkit. ACM Trans. Comput.-Hum. Interact.,

3:66–106, March 1996.

[Rus] A. Russel. Comet: Low latency data for

the browser. alex.dojotoolkit.org/2006/03/

comet-low-latency-data-for-the-browser/. March 3, 2006. Web.

March 15, 2011.

[RWDN07] A. Russell, G. Wilkins, D. Davis, and M. Nesbitt. The Bayeux Specifi-

cation - Bayeux Protocol. Standards Track, 2007. http://svn.cometd.

com/trunk/bayeux/bayeux.html.

82

http://www.oracle.com/technetwork/middleware/wc-real-time-collaboration/overview/webcenter-real-time-collaboration-165168.pdf
http://www.oracle.com/technetwork/middleware/wc-real-time-collaboration/overview/webcenter-real-time-collaboration-165168.pdf
http://www.oracle.com/technetwork/middleware/wc-real-time-collaboration/overview/webcenter-real-time-collaboration-165168.pdf
http://www.gartner.com/it/page.jsp?id=1544815
http://www.gartner.com/it/page.jsp?id=1544815
http://www.ravensburger.com/usa/products/games/family_games/scotland_yard_26117/index.html
http://www.ravensburger.com/usa/products/games/family_games/scotland_yard_26117/index.html
alex.dojotoolkit.org/2006/03/comet-low-latency-data-for-the-browser/
alex.dojotoolkit.org/2006/03/comet-low-latency-data-for-the-browser/
http://svn.cometd.com/trunk/bayeux/bayeux.html
http://svn.cometd.com/trunk/bayeux/bayeux.html

Bibliography

[SA04a] P. Saint-Andre. Extensible Messaging and Presence Protocol (XMPP):

Core. RFC 3920 (Proposed Standard), October 2004.

[SA04b] P. Saint-Andre. Extensible Messaging and Presence Protocol (xmpp):

Instant Messaging and Presence. RFC 3921 (Proposed Standard), Oc-

tober 2004.

[SAP11] SAP. Streamwork, 2011. http://www.sapstreamwork.com/.

[SKS+09] Daniel Schuster, I. Koren, T. Springer, D. Hering, B. Söllner,

M. Endler, and A. Schill. Handbook of Research on Mobile Software En-

gineering: Design, Implementation and Emergent Applications, chap-

ter Creating Applications for Real-time Collaboration with XMPP and

Android on Mobile Devices. IGI Global, 2009.

[Söl09] Benjamin Söllner. XMPP-based Media Sharing for Mobile Collabo-

ration with Android Phones. Master’s thesis, Technische Universität

Dresden, Fakultät Informatik, Oktober 2009.

[Sof11] Jive Software. Jive Engage Platform, 2011. http://www.jivesoftware.

com/products.

[SSB+08] T. Springer, D. Schuster, I. Braun, J. Janeiro, M. Endler, and A. A. F.

Loureiro. A flexible architecture for mobile collaboration services. In

Companion ’08: Proceedings of the ACM/IFIP/USENIX Middleware

’08 Conference Companion, pages 118–120. New York, NY, USA, 2008.

ACM.

[SSS10] D. Schuster, T. Springer, and A. Schill. Service-based Development of

Mobile Real-time Collaboration Applications for Social Networks. In

PerCom Workshops, pages 232–237, 2010.

[Str08] Stefan Strigler. JSJaC - JavaScript Jabber/XMPP Client Library,

2008. http://blog.jwchat.org/jsjac.

[The10] The jQuery Project. jQuery, 2010. http://jquery.com/.

[The11] The Dojo Foundation. Open Cooperative Web Framework, 2011. http:

//opencoweb.org/.

[Twi10] Twiddla. Twiddla, 2010. http://www.twiddla.com/.

[Wan08] Weigang Wang. Powermeeting on common ground: web based syn-

chronous groupware with rich user experience. In Proceedings of the

hypertext 2008 workshop on Collaboration and collective intelligence,

WebScience ’08, pages 35–39, New York, NY, USA, 2008. ACM.

83

http://www.sapstreamwork.com/
http://www.jivesoftware.com/products
http://www.jivesoftware.com/products
http://blog.jwchat.org/jsjac
http://jquery.com/
http://opencoweb.org/
http://opencoweb.org/
http://www.twiddla.com/

Bibliography

[WML10] David Wang, Alex Mah, and Soren Lassen. Google Wave Operational

Transformation, 2010. http://wave-protocol.googlecode.com/hg/

whitepapers/operational-transform/operational-transform.html.

[YAH11] YAHOO! Graded browser support, 2011. http://developer.yahoo.

com/yui/articles/gbs/index.html.

[YCW09] Chuan Yue, Zi Chu, and Haining Wang. RCB: A simple and practical

framework for real-time collaborative browsing. In Proceedings of the

2009 conference on USENIX Annual technical conference, USENIX’09,

pages 29–29, Berkeley, CA, USA, 2009. USENIX Association.

[YI03] Muhammad Younas and Rahat Iqbal. Developing Collaborative Edit-

ing Applications using Web Services. In Proc. 5th Int. Workshop on

Collaborative Editing, 2003.

84

http://wave-protocol.googlecode.com/hg/whitepapers/operational-transform/operational-transform.html
http://wave-protocol.googlecode.com/hg/whitepapers/operational-transform/operational-transform.html
http://developer.yahoo.com/yui/articles/gbs/index.html
http://developer.yahoo.com/yui/articles/gbs/index.html

List of Figures

2.1. XMPP Architecture . 6

2.2. IQ Interaction . 10

2.3. Synchronous Interaction Model . 12

2.4. Non-blocking Interaction Model . 13

2.5. Asynchronous Interaction Model . 13

2.6. Comet HTTP Streaming . 17

2.7. Comet Long Polling . 18

2.8. BOSH architecture [PSSAM10] . 19

2.9. Websocket connection life cycle . 20

2.10. Mobilis Service Environment [Lüb11] 22

4.1. Major components of the Architecture 36

4.2. Architecture using Comet techniques 37

4.3. Architecture with WebSockets . 39

4.4. Architecture using XMPP over BOSH 40

4.5. Mobilis Web Gateway Architecture 42

4.6. Mobilis Web Client Architecture . 44

4.7. Sequence diagram for MobilisServiceDiscovery 50

6.1. QUnit Test: Firefox 5, Mac OS X 10.6 66

6.2. Screenshot MobilisXHunt spectator web application 69

6.3. Screenshot MobilisGroups web client 71

6.4. Performance evaluation . 72

A.1. QUnit Test: Chrome 12, Mac OS X 10.6 93

A.2. QUnit Test: Firefox 5, Mac OS X 10.6 94

A.3. QUnit Test: Safari 5, Mac OS X 10.6 94

A.4. QUnit Test: Internet Explorer 9, Windows 7 95

A.5. QUnit Test: Opera 9, Mac OS X 10.6 95

A.6. QUnit Test: Safari Mobile 5, iPhone OS 4 96

A.7. QUnit Test: Safari Mobile 5, iOS 4 96

A.8. QUnit Test: Playbook Browser, RIM Tablet OS 1 97

A.9. QUnit Test: Opera Mini, iPhone OS4 4 97

85

List of Figures

A.10.QUnit Test: WebOS Browser, webOS 5 98

A.11.QUnit Test: Android Browser, Android 2.2 98

A.12.QUnit Test: Android Tablet Browser, Android 3 99

B.1. Initial HTTP Request . 101

B.2. Initial HTTP Response . 101

B.3. Service Discovery Request . 102

B.4. Service Discovery Response 55 ms 102

86

List of Tables

1.1. Fragmentation of Tablet Platforms 2

2.1. Features of web-based eCollaboration tools 29

3.1. Functional requirements . 32

3.2. Non-functional requirements . 33

4.1. Differences between communication protocols 36

4.2. Requirements consideration . 54

5.1. Available Plug-ins for Mobilis Services Web Client 62

5.2. Fully implemented plug-ins . 63

6.1. Browser Support . 67

6.2. Available methods of Mobilis.xhunt 68

87

List of Tables

88

Listings

2.1. Example for a message stanza . 8

2.2. Examples for presence stanzas . 9

2.3. Example for a message stanza . 19

4.1. Initial BOSH HTTP POST header 45

4.2. Initial BOSH HTTP POST body . 45

4.3. BOSH HTTP response header . 46

4.4. BOSH HTTP response body . 46

5.1. Anonymous self-execution function in Javascript 56

5.2. Reverse proxy Openfire HTTP Binding 58

5.3. Configuration of the Mobilis Client Library 59

5.4. Example call of Mobilis.core.connect 60

5.5. Example call of Mobilis.core.mobilisServiceDiscovery 60

5.6. Implementation of Mobilis.core.mobilisServiceDiscovery 61

5.7. Example call of Mobilis.core.addHandler 61

5.8. Plug-in skeleton . 62

6.1. Mobilis.xhunt . 67

89

Listings

90

Acronyms

Notation Description

AARG Augmented/Alternate Reality Games. 24

API Application Programming Interface. 2, 15, 20, 25, 27,

31, 35, 37–39, 42, 43, 47, 53, 58, 62, 63, 68

BOSH Bidirectional-streams Over Synchronous HTTP . 18,

19, 27, 30, 36, 39–43, 45, 47–50, 55–59, 71–73, 75, 76

CPU Central Processing Unit . 15

CSS Cascading Style Sheets. 33, 42, 55

DNS Domain Name System. 7

DOM Document Object Model . 17, 55, 56, 60, 68

HTML Hypertext Markup Language. 16, 33, 42, 55, 63, 70

HTTP Hypertext Transfer Protocol . 9, 13–20, 24, 26, 27, 30,

35–40, 42, 45, 46, 55, 56, 71–73

IETF Internet Engineering Task Force. 5, 6, 9, 20, 39

IM Instant Message. 6–8

IP Internet Protocol . 7, 13, 17, 39, 41

IQ Info/Query. 8–10, 48, 49

IRC Internet Relay Chat . 11

JID Jabber ID . 6, 7, 10, 11, 21, 22, 48, 50–52, 58, 59

JMS Java Messaging Service. 25

JVM Java Virtual Machine. 15

LTE Long Term Evolution. 1

MIME Multipurpose Internet Mail Extensions. 16

MUC Multi User Chat . 11, 23, 32

91

Acronyms

Notation Description

MXA Mobilis XMPP on Android . 35

RFC Request for Proposal . 5

RIM Research In Motion. 1

RPC Remote Procedure Call . 45

SASL Simple Authentication and Security Layer . 7, 34, 40,

46, 48

SPA Single-page Application. 55, 56

TCP Transport Control Protocol . 6, 7, 13, 15, 17–20, 35,

37, 39, 41, 42, 57, 72

TLS Transport Layer Security . 7, 34, 40, 46, 48

UI user interface. 1, 12, 15, 43, 55, 67, 68, 70, 76

UID Unique Identification. 52, 53

URL Uniform Resource Locater . 40, 46, 57, 58

W3C World Wide Web Consortium. 2, 20

XEP XMPP Extension Protocol . 5, 8–11, 18, 21, 30, 38,

39, 41, 47–49, 52, 58

XHR XMLHttpRequest . 16, 17, 26, 30, 45

XML eXtensible Markup Language. 7–10, 19, 26, 39, 40,

46, 48, 50, 60, 69

XMPP eXtensible Messaging and Presence Protocol . 1, 5–

11, 15, 18, 19, 21–23, 25–28, 30, 31, 35–43, 45, 47,

48, 52, 53, 55–60, 62, 63, 65, 66, 68, 71–73, 75, 76

XSF XMPP Standards Foundation. 5, 10

92

A. Mobilis Web Gateway QUnit Tests

Figure A.1.: QUnit Test: Chrome 12, Mac OS X 10.6

93

A. Mobilis Web Gateway QUnit Tests

Figure A.2.: QUnit Test: Firefox 5, Mac OS X 10.6

Figure A.3.: QUnit Test: Safari 5, Mac OS X 10.6

94

Figure A.4.: QUnit Test: Internet Explorer 9, Windows 7

Figure A.5.: QUnit Test: Opera 9, Mac OS X 10.6

95

A. Mobilis Web Gateway QUnit Tests

Figure A.6.: QUnit Test: Safari Mobile 5, iPhone OS 4

Figure A.7.: QUnit Test: Safari Mobile 5, iOS 4

96

Figure A.8.: QUnit Test: Playbook Browser, RIM Tablet OS 1

Figure A.9.: QUnit Test: Opera Mini, iPhone OS4 4

97

A. Mobilis Web Gateway QUnit Tests

Figure A.10.: QUnit Test: WebOS Browser, webOS 5

Figure A.11.: QUnit Test: Android Browser, Android 2.2

98

Figure A.12.: QUnit Test: Android Tablet Browser, Android 3

99

B. Performance Evaluation

Figure B.1.: Initial HTTP Request

Figure B.2.: Initial HTTP Response

101

B. Performance Evaluation

Figure B.3.: Service Discovery Request

Figure B.4.: Service Discovery Response 55 ms

102

	Assignment
	Confirmation
	Abstract
	Contents
	Introduction
	The Overall Picture
	Contribution
	Outline

	Fundamentals
	Extensible Messaging and Presence Protocol
	Architecture
	Streaming XML
	XMPP Extension Protocols

	Asynchronous Web Communication
	Web Interaction Models
	Architecture of the World Wide Web
	Real-Time Web Techniques

	Mobilis Service Environment
	Mobilis Services
	Mobilis Beans

	State-of-the-Art
	Related Research Activities
	Collaboration Tools
	Conclusion

	Summary

	Requirement Analysis
	Functional Requirements
	Non-functional Requirements
	Summary

	Conceptual Design
	XMPP and the Web
	Comet
	WebSockets
	BOSH

	Architecture
	Mobilis Web Client
	Event-driven Architecture
	XMPP Web Client
	Mobilis Services Web Client

	Summary

	Implementation
	Single Page Application
	XMPP Web Client
	Mobilis Services Web Client
	Configuration

	Extensibility
	Summary

	Evaluation
	Browser Support
	MobilisXHunt Spectator Web Application
	Mobilis.xhunt
	xhunt.js
	Summary

	MobilisGroups Mobile Web client
	Performance
	Error Handling
	Summary

	Conclusion
	Summary
	Outlook

	Bibliography
	List of Figures
	List of Tables
	Listings
	Acronyms
	Mobilis Web Gateway QUnit Tests
	Performance Evaluation

